STHNAMAX CONNECTIVITY SYSTEMS

Signamax ${ }^{\text {TM }}$ Connectivity Systems Model 065-7841
24-Port 10/100/100BaseT/TX Managed Switch User's Guide

Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch Signamax ${ }^{\text {TM }}$ Connectivity Systems Model 065-7841

24-Port 10/100/100BaseT/TX Managed Switch User's Guide

Release 1.0

Release Date: May 2008

Table of Contents

CAUTION VI
Electronic Emission Notices VI

1. INTRODUCTION 2
1-1. Overview of 065-7841 2
1-2. CHECKLIST 5
1-3. Features 5
1-4. Full View of 065-7841 7
1-4-1. User Interfaces on the Front Panel (Button, LEDs and Plugs) 7
1-4-2. AC Power Input on the Rear Panel 8
1-5. View of the Optional Modules 9
2. INSTALLATION 10
2-1. Starting 065-7841 Up 10
2-1-1. Hardware and Cable Installation 10
2-1-2. Installing Chassis to a 19-Inch Wiring Closet Rail 12
2-1-3. Cabling Requirements 12
2-1-3-1. Cabling Requirements for TP Ports 13
2-1-3-2. Cabling Requirements for 1000SXILX SFP Module 13
2-1-3-3. Switch Cascading in Topology 14
2-1-4. Configuring the Management Agent of 065-7841 17
2-1-4-1. Configuring the Management Agent of 065-7841 through the Serial RS-232 Port 18
2-1-4-2. Configuring the Management Agent of 065-7841 through the Ethernet Port. 20
2-1-5. IP Address Assignment 21
2-2. TYPICAL ApPLICATIONS 26
3. OPERATION OF WEB-BASED MANAGEMENT 28
3-1. Web Management Home Overview 30
3-1-1. System Information 33
3-1-2. Account Configuration 35
3-1-3. Time Configuration 36
3-1-4. IP Configuration 39
3-1-5. Loop Detection 42
3-1-6. Management Policy 43
3-1-7. System Log 46
3-2. Port Configuration. 47
3-2-1. Port Configuration 48
3-2-2. Port Status 50
3-2-3. Simple Counter 54
3-2-4. Detail Counter 56
3-3. VLAN 60
3-3-1. VLAN Mode 60
3-3-2. Tag-based Group 61
3-3-3. Port-based Group 63
3-3-4. Ports 65
3-3-5. Management 67
3-4. MAC 68
3-4-1. Mac Address Table 68
3-4-2. Static Filter 70
3-4-3. Static Forward 71
3-4-4. MAC Alias 72
3-4-5. MAC Table 73
3-5. GVRP 74
3-5-1. Config. 75
3-5-2. Counter 77
3-5-3. Group 79
3-6. QoS(Quality of Service) Configuration 80
3-6-1. Ports 81
3-6-2. Qos Control List 83
3-6-3.Rate Limiters 89
3-6-4.Storm Control 91
3-6-5.Wizard 92
3-7. SNMP Configuration 102
3-8. ACL 104
3-8-1.Ports 104
3-8-2.Rate Limiters 106
3-8-3.Access Control List 107
3-8-4.Wizard 136
3-9. IP MAC Binding 145
3-10. 802.1X Configuration 147
3-10-1.Server 152
3-10-2.Port Configuration 154
3-10-3. Status 156
3-10-4. Statistics 158
3-11. Trunking Configuration 159
3-11-1.Port 161
3-11-2 Aggregator View 163
3-11-3 ACP System Priority 164
3-12 STP CONFIGURATION 165
3-12-1. Status 165
3-12-2. Configuration 167
3-12-3. STP Port Configuration 169
3-13 MSTP 172
3-13-1 Status 172
3-13-2 Region Config 173
3-13-3 Instance View 174
3-14. MirRor 183
Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch
3-15. IGMP SNOOPING 185
3-15-1 Proxy 185
3-15-2 Group Membership 187
3-16. Alarm Configuration 188
3-16-1 Events 189
3-16-2 Email 190
3-17. CONFIGURATION 191
3-17-1. Factory Defaults 192
3-17-2 . Save Start 192
3-17-3 . Save User 192
3-17-4. Restore User 193
3-18. Config File 194
3-19. DiAGNOSTICS 195
3-19-1 . Diag 195
3-19-2 .Ping 196
3-19-2 .VeriPHY 197
3-20 Maintenance 198
3-20-1 .Reset Device 198
3-20-2 .Software Upload 198
3-21 Logout 199
4. OPERATION OF CLI MANAGEMENT 200
4-1. CLI Management 200
4-1-1. Login 200
4-2. Commands of CLI 202
4-2-1. Global Commands of CLI 203
4-2-2. Local Commands of CLI. 209
5. MAINTENANCE 290
5-1. Resolving No Link Condition 290
5-2. Q\&A 290
APPENDIX A TECHNICAL SPECIFICATIONS 291
APPENDIX B NULL MODEM CABLE SPECIFICATIONS 295

Revision History

Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch

Caution

Circuit devices are sensitive to static electricity, which can damage their delicate electronics. Dry weather conditions or walking across a carpeted floor may cause you to acquire a static electrical charge.

To protect your device, always:

- Touch the metal chassis of your computer to ground the static electrical charge before you pick up the circuit device.
- Pick up the device by holding it on the left and right edges only.

Electronic Emission Notices

Federal Communications Commission (FCC) Statement

This equipment has been tested and found to comply with the limits for a class A computing device pursuant to Subpart J of part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment.

European Community (CE) Electromagnetic Compatibility Directive

This equipment has been tested and found to comply with the protection requirements of European Emission Standard EN55022/EN60555-2 and the Generic European Immunity Standard EN50082-1.

EMC:

EN55022(1988)/CISPR-22(1985)	class A
EN60555-2(1995)	class A
EN60555-3	
IEC1000-4-2(1995)	$4 K \mathrm{~V} \mathrm{CD}, 8 \mathrm{KV}, \mathrm{AD}$
IEC1000-4-3(1995)	$3 \mathrm{~V} / \mathrm{m}$
IEC1000-4-4(1995)	$1 \mathrm{KV}-$ (power line), $0.5 \mathrm{KV}-$ (signal line)

About this user's manual

In this user's manual, it will not only tell you how to install and connect your network system but configure and monitor the 065-7841 through the built-in CLI and web by RS-232 serial interface and Ethernet ports step-by-step. Many explanation in detail of hardware and software functions are shown as well as the examples of the operation for web-based interface and command-line interface (CLI).

Overview of this user's manual

- Chapter 1 "Introduction" describes the features of 065-7841
- Chapter 2 "Installation"
- Chapter 3 "Operation of Web-based Management"
- Chapter 4 "Operation of CLI Management"
- Chapter 5 "Maintenance"

1. Introduction

1-1. Overview of 065-7841

065-7841, a 24-port Layer 2 Gigabit Managed Switch, is a standard switch that meets all IEEE 802.3/u/x/z Gigabit, Fast Ethernet specifications. The switch included 20-Port 10/100/1000Mbps TP and 4-Port Gigabit TP/SFP Fiber management Ethernet switch. The switch can be managed through RS-232 serial port via directly connection, or through Ethernet port using CLI or Web-based management unit, associated with SNMP agent. With the SNMP agent, the network administrator can logon the switch to monitor, configure and control each port's activity in a friendly way. The overall network management is enhanced and the network efficiency is also improved to accommodate high bandwidth applications. In addition, the switch features comprehensive and useful function such as ACL, IPMAC Binding, DHCP Option 82, QoS (Quality of Service), Spanning Tree, VLAN, Port Trunking, Bandwidth Control, Port Security, SNMP/RMON, IGMP Snooping capability via the intelligent software. It is suitable for both metro-LAN and office application.

In this switch, Port 21 and Port 24 include two types of media --- TP and SFP Fiber (LC, BiDi LC...); this port supports 10/100/1000Mbps TP or 1000Mbps SFP Fiber with auto-detected function. 1000Mbps SFP Fiber transceiver is used for highspeed connection expansion.

- 1000Mbps LC, Multi-Mode, SFP Fiber transceiver
- 1000Mbps LC, 10km, SFP Fiber transceiver
- 1000Mbps LC, 30km, SFP Fiber transceiver
- 1000Mbps LC, 50km, SFP Fiber transceiver
- 1000Mbps BiDi LC, 20km, 1550nm SFP Fiber WDM transceiver
- 1000Mbps BiDi LC, 20km, 1310nm SFP Fiber WDM transceiver
$10 / 100 / 1000 \mathrm{Mbps}$ TP is a standard Ethernet port that meets all IEEE 802.3/u/x/z Gigabit, Fast Ethernet specifications. 1000Mbps SFP Fiber transceiver is a Gigabit Ethernet port that fully complies with all IEEE $802.3 z$ and 1000BaseSX/LX standards.

1000Mbps Single Fiber WDM (BiDi) transceiver is designed with an optic Wavelength Division Multiplexing (WDM) technology that transports bi-directional full duplex signal over a single fiber simultaneously.

For upgrading firmware, please refer to the Section 3-21 or Section 4-2-2 for more details. The switch will not stop operating while upgrading firmware and after that, the configuration keeps unchanged.

- Key Features in the Device

QoS:
Support Quality of Service by the IEEE 802.1P standard. There are two priority queue and packet transmission schedule.

Spanning Tree:
Support IEEE 802.1D, IEEE 802.1w (RSTP: Rapid Spanning Tree Protocol) standards.

VLAN:
Support Port-based VLAN and IEEE802.1Q Tag VLAN. Support 256 active VLANs and VLAN ID 1~4094.

Port Trunking:
Support static port trunking and port trunking with IEEE 802.3ad LACP.
Bandwidth Control:
Support ingress and egress per port bandwidth control.
Port Security:
Support allowed, denied forwarding and port security with MAC address.

SNMP/RMON:

SNMP agent and RMON MIB. In the device, SNMP agent is a client software which is operating over SNMP protocol used to receive the command from SNMP manager (server site) and echo the corresponded data, i.e. MIB object. Besides, SNMP agent will actively issue TRAP information when happened.

RMON is the abbreviation of Remote Network Monitoring and is a branch of the SNMP MIB.

The device supports MIB-2 (RFC 1213), Bridge MIB (RFC 1493), RMON MIB (RFC 1757)-statistics Group 1,2,3,9, Ethernet-like MIB (RFC 1643), Ethernet MIB (RFC 1643) and so on.

IGMP Snooping:
Support IGMP version 2 (RFC 2236): The function IGMP snooping is used to establish the multicast groups to forward the multicast packet to the member ports, and, in nature, avoid wasting the bandwidth while IP multicast packets are running over the network.

IGMP Proxy:
The implementation of IP multicast processing. The switch supports IGMP version 1 and IGMP version 2, efficient use of network bandwidth, and fast response time for channel changing. IGMP version 1 (IGMPv1) is described in RFC1112, and IGMP version 2 (IGMPv2) is described in RFC 2236. Hosts interact with the system through the exchange of IGMP messages. Similarly, when you configure IGMP proxy, the system interacts with the router on its upstream interface through the exchange of IGMP messages. However, when acting as the proxy, the system performs the host portion of the IGMP task on the upstream interface as follows:

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

- When queried, sends group membership reports to the group.
- When one of its hosts joins a multicast address group to which none of its other hosts belong, sends unsolicited group membership reports to that group.
- When the last of its hosts in a particular multicast group leaves the group, sends an unsolicited leave group membership report to the all-routers group (244.0.0.2).

1-2. Checklist

Before you start installing the switch, verify that the package contains the following:

- 065-7841 24-port Layer 2 Gigabit Managed Switch
- SFP Modules (optional)
- Mounting Accessory (for 19" Rack Shelf)
- This User's Manual in CD-ROM
- AC Power Cord
- RS-232 Cable

Please notify your sales representative immediately if any of the aforementioned items is missing or damaged.

1-3. Features

The 065-7841, a standalone off-the-shelf switch, provides the comprehensive features listed below for users to perform system network administration and efficiently and securely serve your network.

- Hardware

- 20 10/100/1000Mbps Auto-negotiation Gigabit Ethernet TP ports
- 4 10/100/1000Mbps TP or 1000Mbps SFP Fiber dual media auto sense
- 1392KB on-chip frame buffer
- Support jumbo frame up to 9600 bytes
- Programmable classifier for QoS (Layer 4/Multimedia)
- 8K MAC address and 4K VLAN support (IEEE802.1Q)
- Per-port shaping, policing, and Broadcast Storm Control
- IEEE802.1Q Q-in-Q nested VLAN support
- Full-duplex flow control (IEEE802.3x) and half-duplex backpressure
- Extensive front-panel diagnostic LEDs; System: Power, TP Port1-24: LINK/ACT, 10/100/1000Mbps, SFP Port 21-24: SFP(LINK/ACT)

- Management

- Supports concisely the status of port and easily port configuration
- Supports per port traffic monitoring counters
- Supports a snapshot of the system Information when you login
- Supports port mirror function
- Supports the static trunk function

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

- Supports 802.1Q VLAN
- Supports user management and limits three users to login
- Maximal packet length can be up to 9600 bytes for jumbo frame application
- Supports DHCP Broadcasting Suppression to avoid network suspended or crashed
- Supports to send the trap event while monitored events happened
- Supports default configuration which can be restored to overwrite the current configuration which is working on via web browser and CLI
- Supports on-line plug/unplug SFP modules
- Supports Quality of Service (QoS) for real time applications based on the information taken from Layer 2 to Layer 4, such as VoIP
- Built-in web-based management and CLI management, providing a more convenient UI for the user
- Supports port mirror function with ingress/egress traffic
- Supports rapid spanning tree (802.1w RSTP)
- Supports multiple spanning tree (802.1s MSTP)
- Supports 802.1X port security on a VLAN
- Supports IP-MAC-Port Binding for LAN security
- Supports user management and only first login administrator can configure the device. The rest of users can only view the switch
- SNMP access can be disabled and prevent from illegal SNMP access
- Supports Ingress, Non-unicast and Egress Bandwidth rating management with a resolution of 1 Mbps
- The trap event and alarm message can be transferred via e-mail
- Supports diagnostics to let administrator knowing the hardware status
- Supports loop detection to protect the switch crash when the networking has looping issue
- HTTP and TFTP for firmware upgrade, system log upload and configuration file import/export
- Supports remote boot the device through user interface and SNMP
- Supports NTP network time synchronization and daylight saving
- Supports 120 event log records in the main memory and display on the local console

1-4. Full View of 065-7841

Fig. 1-1 Full View of 065-7841

1-4-1. User Interfaces on the Front Panel (Button, LEDs and Plugs)

There are 24 TP Gigabit Ethernet ports and 2 SFP fiber ports for optional removable modules on the front panel of the switch. LED display area, locating on the left side of the panel, contains a Power LED, which indicates the power status and 24 ports working status of the switch. One RS-232 DB-9 interface is offered for configuration or management.

Fig. 1-2 Front View of 065-7841

Signamax ${ }^{\text {TM }} 065$-7841 24-Port 10/100/1000BaseT/TX Managed Switch

- LED Indicators

| LED | Color | Function |
| :--- | :--- | :--- | :--- |
| System LED | | |
| 10/100/1000Ethernet TP Port 1 to 24 LED | | |
| POWER | Green | Lit when +5V DC power is on and good |
| LINK/ACT | Green | Lit when connection with remote device is good
 Blinks when any traffic is present
 Off when cable connection is not good |
| $10 / 100 / 1000 \mathrm{Mbps}$ | Green/
 Amber | Lit green when 1000Mbps speed is active
 Lit ember when 100Mbps speed is active
 Off when 10Mbps speed is active |
| 1000SX/LX Gigabit Fiber Port 21, 24 LED | | |
| SFP(LINK/ACT) | Green | Lit when connection with the remote device is good
 Blinks when any traffic is present
 Off when module connection is not good |

Table1-1

1-4-2. AC Power Input on the Rear Panel

One socket on the rear panel is for AC power input.

Fig. 1-3 Rear View of 065-7841

1-5. View of the Optional Modules

In the switch, Port 21~24 includes two types of media --- TP and SFP Fiber (LC, BiDi LC...); this port supports 10/100/1000Mbps TP or 1000Mbps SFP Fiber with auto-detected function. 1000Mbps SFP Fiber transceiver is used for highspeed connection expansion; the following are optional SFP types provided for the switch:

- 1000Mbps LC, MM, SFP Fiber transceiver
- 1000Mbps LC, SM 10km, SFP Fiber transceiver
- 1000Mbps LC, SM 30km, SFP Fiber transceiver
- 1000Mbps LC, SM 50km, SFP Fiber transceiver
- 1000Mbps BiDi LC, type 1, SM 20km, SFP Fiber WDM transceiver
- 1000Mbps BiDi LC, type 2, SM 20km, SFP Fiber WDM transceiver
- 1000Mbps LC, SM 10km, SFP Fiber transceiver with DDM

Fig. 1-4 Front View of 1000Base-SX/LX LC, SFP Fiber Transceiver

Fig. 1-5 Front View of 1000Base-LX BiDi LC, SFP Fiber Transceiver

2. Installation

2-1. Starting 065-7841 Up

This section will give users a quick start for:

- Hardware and Cable Installation
- Management Station Installation
- Software booting and configuration

2-1-1. Hardware and Cable Installation

At the beginning, please do first:
\Rightarrow Wear a grounding device to avoid the damage from electrostatic discharge
\Rightarrow Be sure that power switch is OFF before you insert the power cord to power source

- Installing Optional SFP Fiber Transceivers to the 065-7841

Note: If you have no modules, please skip this section.

Fig. 2-1 Installation of Optional SFP Fiber Transceiver

- Connecting the SFP Module to the Chassis:

The optional SFP modules are hot swappable, so you can plug or unplug it before or after powering on.

1. Verify that the SFP module is the right model and conforms to the chassis
2. Slide the module along the slot. Also be sure that the module is properly seated against the slot socket/connector
3. Install the media cable for network connection
4. Repeat the above steps, as needed, for each module to be installed into slot(s)
5. Have the power ON after the above procedures are done

- TP Port and Cable Installation

\Rightarrow In the switch, TP port supports MDI/MDI-X auto-crossover, so both types of cable, straight-through (Cable pin-outs for RJ-45 jack 1, 2, 3, 6 to 1, 2, 3, 6 in 10/100M TP; 1, 2, 3, 4, 5, 6, 7, 8 to 1, 2, 3, 4, 5, 6, 7, 8 in Gigabit TP) and crossed-over (Cable pin-outs for RJ-45 jack 1, 2, 3,6 to 3, 6, 1, 2) can be used. It means you do not have to tell from them, just plug it.
\Rightarrow Use Cat. 5 grade RJ-45 TP cable to connect to a TP port of the switch and the other end is connected to a network-aware device such as a workstation or a server.
\Rightarrow Repeat the above steps, as needed, for each RJ-45 port to be connected to a Gigabit 10/100/1000 TP device.

Now, you can start having the switch in operation.

- Power On

The switch supports $100-240$ VAC, $50-60 \mathrm{~Hz}$ power supply. The power supply will automatically convert the local AC power source to DC power. It does not matter whether any connection plugged into the switch or not when power on, even modules as well. After the power is on, all LED indicators will light up immediately and then all off except the power LED still keeps on. This represents a reset of the system.

- Firmware Loading

After resetting, the bootloader will load the firmware into the memory. It will take about 30 seconds, after that, the switch will flash all the LED once and automatically performs self-test and is in ready state.

2-1-2. Installing Chassis to a 19-Inch Wiring Closet Rail

Fig. 2-2

Caution: Allow a proper spacing and proper air ventilation for the cooling fan at both sides of the chassis.
\Rightarrow Wear a grounding device for electrostatic discharge.
\Rightarrow Screw the mounting accessory to the front side of the switch (See Fig. 2-2).
\Rightarrow Place the Chassis into the 19 -inch wiring closet rail and locate it at the proper position. Then, fix the Chassis by screwing it.

2-1-3. Cabling Requirements

To help ensure a successful installation and keep the network performance good, please take a care on the cabling requirement. Cables with worse specification will render the LAN to work poorly.

2-1-3-1. Cabling Requirements for TP Ports

\Rightarrow For Fast Ethernet TP network connection

- The grade of the cable must be Cat. 5 or Cat. 5e with a maximum length of 100 meters.
\Rightarrow Gigabit Ethernet TP network connection
- The grade of the cable must be Cat. 5 or Cat. 5e with a maximum length of 100 meters. Cat. 5 e is recommended.

2-1-3-2. Cabling Requirements for 1000SXILX SFP Module

It is more complex and comprehensive contrast to TP cabling in the fiber media. Basically, there are two categories of fiber, multi mode (MM) and single mode (SM). The later is categorized into several classes by the distance it supports. They are SX, LX, LHX, XD, and ZX. From the viewpoint of connector type, there mainly are LC and BIDI LC.

- Gigabit Fiber with multi-mode LC SFP module
- Gigabit Fiber with single-mode LC SFP module
- Gigabit Fiber with BiDi LC 1310nm SFP module
- Gigabit Fiber with BiDi LC 1550nm SFP module

The following table lists the types of fiber that we support and those else not listed here are available upon request.

IEEE 802.3z Gigabit Ethernet 1000SX 850nm	Multi-mode Fiber Cable and Modal Bandwidth			
	Multi-mode 62.5/125 $\mu \mathrm{m}$		Multi-mode 50/125 $\mu \mathrm{m}$	
	Modal Bandwidth	Distance	Modal Bandwidth	Distance
	$160 \mathrm{MHz}-\mathrm{Km}$	220m	400MHz-Km	500m
	200MHz-Km	275m	$500 \mathrm{MHz}-\mathrm{Km}$	550m
1000Base- LX/LHX/XD/ZX	Single-mode Fiber 9/125 $\mu \mathrm{m}$			
	Single-mode transceiver 1310nm 10Km			
	Single-mode transceiver 1550nm 30,50Km			
1000Base-LX Single Fiber (BIDI LC)	Single-Mode *20Km		TX(Transmit)	1310nm
			RX(Receive)	1550nm
	Single-Mode *20Km		TX(Transmit)	1550nm
			RX(Receive)	1310nm

Table2-1

2-1-3-3. Switch Cascading in Topology

- Takes the Delay Time into Account

Theoretically, the switch partitions the collision domain for each port in switch cascading that you may up-link the switches unlimitedly. In practice, the network extension (cascading levels \& overall diameter) must follow the constraint of the IEEE 802.3/802.3u/802.3z and other 802.1 series protocol specifications, in which the limitations are the timing requirement from physical signals defined by 802.3 series specification of Media Access Control (MAC) and PHY, and timer from some OSI layer 2 protocols such as 802.1d, 802.1q, LACP and so on.

The fiber, TP cables and devices' bit-time delay (round trip) are as follows:

1000Base-X TP, Fiber			100Base-TX TP		100Base-FX Fiber	
Round trip Delay: 4096			Round trip Delay: 512			
Cat. 5 TP Wire:		11.12/m	Cat. 5 TP Wire:	1.12/m	Fiber Cable:	1.0/m
Fiber Cable		10.10/m	TP to fiber Converter: 56			
Bit Time unit : 1ns (1sec./1000 Mega bit)			Bit Time unit: $0.01 \mu \mathrm{~s}$ (1sec./100 Mega bit)			

Table 2-2

Sum up all elements' bit-time delay and the overall bit-time delay of wires/devices must be within Round Trip Delay (bit times) in a half-duplex network segment (collision domain). For full-duplex operation, this will not be applied. You may use the TP-Fiber module to extend the TP node distance over fiber optic and provide the long haul connection.

- Typical Network Topology in Deployment

A hierarchical network with minimum levels of switch may reduce the timing delay between server and client station. Basically, with this approach, it will minimize the number of switches in any one path; will lower the possibility of network loop and will improve network efficiency. If more than two switches are connected in the same network, select one switch as Level 1 switch and connect all other switches to it at Level 2. Server/Host is recommended to connect to the Level 1 switch. This is general if no VLAN or other special requirements are applied.

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Manaqed Switch
Case1: All switch ports are in the same local area network. Every port can access each other (See Fig. 2-3).

Fig. 2-3 No VLAN Configuration Diagram
If VLAN is enabled and configured, each node in the network that can communicate each other directly is bounded in the same VLAN area.

Here VLAN area is defined by what VLAN you are using. The switch supports both port-based VLAN and tag-based VLAN. They are different in practical deployment, especially in physical location. The following diagram shows how it works and what the difference they are.

Case2a: Port-based VLAN (See Fig.2-4).

Fig. 2-4 Port-based VLAN Diagram

1. The same VLAN members could not be in different switches.
2. Every VLAN members could not access VLAN members each other.
3. The switch manager has to assign different names for each VLAN groups at one switch.

Case 2b: Port-based VLAN (See Fig.2-5).

Fig. 2-5 Port-based VLAN Diagram

1. VLAN1 members could not access VLAN2, VLAN3 and VLAN4 members.
2. VLAN2 members could not access VLAN1 and VLAN3 members, but they could access VLAN4 members.
3. VLAN3 members could not access VLAN1, VLAN2 and VLAN4.
4. VLAN4 members could not access VLAN1 and VLAN3 members, but they could access VLAN2 members.

Case3a: The same VLAN members can be at different switches with the same VID (See Fig. 2-6).

Fig. 2-6 Attribute-based VLAN Diagram

2-1-4. Configuring the Management Agent of 065-7841

We offer you three ways to startup the switch management function. They are RS-232 console, CLI, and Web. Users can use any one of them to monitor and configure the switch. You can touch them through the following procedures.
Section 2-1-4-1: Configuring the Management Agent of 065-7841 through the Serial RS-232 Port

Section 2-1-4-2: Configuring the Management Agent of 065-7841 through the Ethernet Port

Note: Please first modify the IP address, Subnet mask, Default gateway and DNS through RS-232 console, and then do the next.

2-1-4-1. Configuring the Management Agent of 065-7841 through the Serial RS-232 Port

To perform the configuration through RS-232 console port, the switch's serial port must be directly connected to a DCE device, for example, a PC, through RS-232 cable with DB-9 connector. Next, run a terminal emulator with the default setting of the switch's serial port. With this, you can communicate with the switch.

In the switch, RS-232 interface only supports baud rate 115200 bps with 8 data bits, 1 stop bit, no parity check and no flow control.

Fig. 2-7 Terminal or Terminal Emulator

To configure the switch, please follow the procedures below:

1. Find the RS-232 DB-9 cable with female DB-9 connector bundled. Normally, it just uses pins 2, 3 and 7. See also Appendix B for more details on Null Modem Cable Specifications.
2. Attaches the DB-9 female cable connector to the male serial RS-232 DB-9 connector on the switch.
3. Attaches the other end of the serial RS-232 DB-9 cable to PC's serial port, running a terminal emulator supporting VT100/ANSI terminal with The switch's serial port default settings. For example, Windows98/2000/XP HyperTerminal utility.

Note: The switch's serial port default settings are listed as follows:

Baud rate	115200
Stop bits	1
Data bits	8
Parity	N
Flow control	none

4. When you complete the connection, then press <Enter> key. The login prompt will be shown on the screen. The default username and password are shown as below:

$$
\text { Username }=\text { admin } \quad \text { Password }=\text { admin }
$$

- Set IP Address, Subnet Mask and Default Gateway IP Address

Please refer to Fig. 2-7 CLI Management for details about ex-factory IP setting. They are default setting of IP address. You can first either configure your PC IP address or change IP address of the switch, next to change the IP address of default gateway and subnet mask.

For example, your network address is 10.1.1.0, and subnet mask is 255.255.255.0. You can change the switch's default IP address 192.168.1.1 to 10.1.1.1 and set the subnet mask to be 255.255 .255 .0 . Then, choose your default gateway, may be it is 10.1.1.254.

Default Value	065-7841	Your Network Setting
IP Address	192.168 .1 .1	10.1 .1 .1
Subnet	255.255 .255 .0	255.255 .255 .0
Default Gateway	192.168 .1 .254	10.1 .1 .254

Table 2-3
After completing these settings in the switch, it will reboot to have the configuration taken effect. After this step, you can operate the management through the network, no matter it is from a web browser or Network Management System (NMS).

Managed Switch - 065-7841
Login: admin

Password: $* * * * * *$

Fig. 2-8 the Login Screen for CLI

2-1-4-2. Configuring the Management Agent of 065-7841 through the Ethernet Port

There are three ways to configure and monitor the switch through the switch's Ethernet port. They are CLI, Web browser and SNMP manager. The user interface for the last one is NMS dependent and does not cover here. We just introduce the first two types of management interface.

065-7841 L2 Managed Switch
Default IP Setting:
IP = 192.168.1.1
Subnet Mask $=255.255 .255 .0$
Default Gateway $=192.168 .1 .254$

- Managing 065-7841 through Ethernet Port

Before you communicate with the switch, you have to finish first the configuration of the IP address or to know the IP address of the switch. Then, follow the procedures listed below.

1. Set up a physical path between the configured the switch and a PC by a qualified UTP Cat. 5 cable with RJ-45 connector.

Note: If PC directly connects to the switch, you have to setup the same subnet mask between them. But, subnet mask may be different for the PC in the remote site. Please refer to Fig. 2-9 about the switch's default IP address information.
2. Run CLI or web browser and follow the menu. Please refer to Chapter 3 and Chapter 4.

Fig. 2-10 the Login Screen for Web

2-1-5. IP Address Assignment

For IP address configuration, there are three parameters needed to be filled in. They are IP address, Subnet Mask, Default Gateway and DNS.

IP address:

The address of the network device in the network is used for internetworking communication. Its address structure looks is shown in the Fig. 2-11. It is "classful" because it is split into predefined address classes or categories.

Each class has its own network range between the network identifier and host identifier in the 32 bits address. Each IP address comprises two parts: network identifier (address) and host identifier (address). The former indicates the network where the addressed host resides, and the latter indicates the individual host in the network which the address of host refers to. And the host identifier must be unique in the same LAN. Here the term of IP address we used is version 4, known as IPv4.

Fig. 2-11 IP address structure

With the classful addressing, it divides IP address into three classes, class A, class B and class C. The rest of IP addresses are for multicast and broadcast. The bit length of the network prefix is the same as that of the subnet mask and is denoted as IP address/X, for example, 192.168.1.0/24. Each class has its address range described below.

Class A:

Address is less than 126.255.255.255. There are a total of 126 networks can be defined because the address 0.0 .0 .0 is reserved for default route and 127.0.0.0/8 is reserved for loopback function.

Bit \# 01078

Network address Host address

Class B:
IP address range between 128.0.0.0 and 191.255.255.255. Each class B network has a 16 -bit network prefix followed 16 -bit host address. There are 16,384 $\left(2^{\wedge} 14\right) / 16$ networks able to be defined with a maximum of $65534\left(2^{\wedge} 16-2\right)$ hosts per network.
$\begin{array}{llll}\text { Bit } \# & 012 & 1516 & 31\end{array}$

Network address
Host address

Class C:
IP address range between 192.0.0.0 and 223.255.255.255. Each class C network has a 24 -bit network prefix followed 8 -bit host address. There are $2,097,152\left(2^{\wedge} 21\right) / 24$ networks able to be defined with a maximum of $254\left(2^{\wedge} 8-2\right)$ hosts per network.

Network address
Host address

Class D and E:
Class D is a class with first 4 MSB (Most significance bit) set to 1-1-1-0 and is used for IP Multicast. See also RFC 1112. Class E is a class with first 4 MSB set to 1-1-1-1 and is used for IP broadcast.

According to IANA (Internet Assigned Numbers Authority), there are three specific IP address blocks reserved and able to be used for extending internal network. We call it Private IP address and list below:

```
Class A 10.0.0.0 --- 10.255.255.255
Class B 172.16.0.0--- 172.31.255.255
Class C 192.168.0.0 --- 192.168.255.255
```

Please refer to RFC 1597 and RFC 1466 for more information.
Subnet mask:
It means the sub-division of a class-based network or a CIDR block. The subnet is used to determine how to split an IP address to the network prefix and the host address in bitwise basis. It is designed to utilize IP address more efficiently and ease to manage IP network.

For a class B network, 128.1.2.3, it may have a subnet mask 255.255.0.0 in default, in which the first two bytes is with all 1s. This means more than 60 thousands of nodes in flat IP address will be at the same network. It's too large to manage practically. Now if we divide it into smaller network by extending network prefix from 16 bits to, say 24 bits, that's using its third byte to subnet this class B network. Now it has a subnet mask 255.255.255.0, in which each bit of the first three bytes is 1 . It's now clear that the first two bytes is used to identify the class B network, the third byte is used to identify the subnet within this class B network and, of course, the last byte is the host number.

Not all IP address is available in the sub-netted network. Two special addresses are reserved. They are the addresses with all zero's and all one's host number. For example, an IP address 128.1.2.128, what IP address reserved will be looked like? All Os mean the network itself, and all 1s mean IP broadcast.

128.1.2.128/25

In this diagram, you can see the subnet mask with 25 -bit long, 255.255.255.128, contains 126 members in the sub-netted network. Another is that the length of network prefix equals the number of the bit with 1 s in that subnet mask. With this, you can easily count the number of IP addresses matched. The following table shows the result.

Prefix Length	No. of IP matched	No. of Addressable IP
/32	1	-
/31	2	-
/30	4	2
/29	8	6
/28	16	14
/27	32	30
/26	64	62
/25	128	126
/24	256	254
/23	512	510
/22	1024	1022
/21	2048	2046
/20	4096	4094
/19	8192	8190
/18	16384	16382
$/ 17$	32768	32766
/16	65536	65534

Table 2-4

According to the scheme above, a subnet mask 255.255.255.0 will partition a network with the class C. It means there will have a maximum of 254 effective nodes existed in this sub-netted network and is considered a physical network in an autonomous network. So it owns a network IP address which may looks like 168.1.2.0.

With the subnet mask, a bigger network can be cut into small pieces of network. If we want to have more than two independent networks in a worknet, a partition to the network must be performed. In this case, subnet mask must be applied.

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Manaqed Switch

For different network applications, the subnet mask may look like 255.255.255.240. This means it is a small network accommodating a maximum of 15 nodes in the network.

Default gateway:
For the routed packet, if the destination is not in the routing table, all the traffic is put into the device with the designated IP address, known as default router. Basically, it is a routing policy. The gateway setting is used for Trap Events Host only in the switch.

For assigning an IP address to the switch, you just have to check what the IP address of the network will be connected with the switch. Use the same network address and append your host address to it.

IP Configuration

IP Address	192.168 .3 .171
	255.255 .255 .0
Subnet Mask	25.1
Default Gateway	192.168 .3 .253
	\square Enable

Apply
Fig. 2-12

First, IP Address: as shown in the Fig. 2-12, enter "192.168.1.1", for instance. For sure, an IP address such as 192.168.1.x must be set on your PC.

Second, Subnet Mask: as shown in the Fig. 2-12, enter "255.255.255.0". Any subnet mask such as 255.255.255.x is allowable in this case.

DNS:

The Domain Name Server translates human readable machine name to IP address. Every machine on the Internet has a unique IP address. A server generally has a static IP address. To connect to a server, the client needs to know the IP of the server. However, user generally uses the name to connect to the server. Thus, the switch DNS client program (such as a browser) will ask the DNS to resolve the IP address of the named server.

2-2. Typical Applications

The 065-7841 implements 24 Gigabit Ethernet TP ports with auto MDIX and two slots for the removable module supporting comprehensive fiber types of connection, including LC and BiDi-LC SFP modules. For more details on the specification of the switch, please refer to Appendix A.

The switch is suitable for the following applications.

- Central Site/Remote site application is used in carrier or ISP (See Fig. 2-13)
- Peer-to-peer application is used in two remote offices (See Fig. 2-14)
- Office network(See Fig. 2-15)

Fig. 2-13 Network Connection between Remote Site and Central Site
Fig. 2-13 is a system wide basic reference connection diagram. This diagram demonstrates how the switch connects with other network devices and hosts.

Fig. 2-14 Peer-to-peer Network Connection

Fig. 2-15 Office Network Connection

3. Operation of Web-based Management

This chapter instructs you how to configure and manage the 065-7841 through the web user interface it supports, to access and manage the 22-Port 10/100/1000Mbps TP and 2-Port Gigabit TP/SFP Fiber management Ethernet switch. With this facility, you can easily access and monitor through any one port of the switch all the status of the switch, including MIBs status, each port activity, Spanning tree status, port aggregation status, multicast traffic, VLAN and priority status, even illegal access record and so on.

The default values of the managed switch are listed in the table below:

IP Address	192.168.1.1
Subnet Mask	255.255 .255 .0
Default Gateway	192.168 .1 .254
Username	admin
Password	admin

Table 3-1
After the managed switch has been finished configuration in the CLI via the switch's serial interface, you can browse it. For instance, type http://192.168.1.1 in the address row in a browser, it will show the following screen (see Fig.3-1) and ask you inputting username and password in order to login and access authentication. The default username and password are both "admin". For the first time to use, please enter the default username and password, then click the <Login> button. The login process now is completed.

Just click the link of "Forget Password" in WebUI (See Fig. 3-1) or input "Ctrl+Z" in CLI's login screen (See Fig. 4-1~4-2) in case the user forgets the manager's password. Then, the system will display a serial No. for the user. Write down this serial No. and contact your vendor, the vendor will give you a temporary password. Use this new password as ID and Password, and it will allow the user to login the system with manager authority temporarily. Due to the limit of this new password, the user only can login the system one time, therefore, please modify your password immediately after you login in the system successfully.

In this login menu, you have to input the complete username and password respectively, the switch will not give you a shortcut to username automatically. This looks inconvenient, but safer.

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

In the switch, it supports a simple user management function allowing only one administrator to configure the system at the same time. If there are two or more users using administrator's identity, the switch will allow the only one who logins first to configure the system. The rest of users, even with administrator's identity, can only monitor the system. For those who have no administrator's identity, can only monitor the system. There are only a maximum of three users able to login simultaneously in the switch.

To optimize the display effect, we recommend you use Microsoft IE 6.0 above, Netscape V7.1 above or FireFox V1.00 above and have the resolution 1024×768. The switch supported neutral web browser interface.

In Fig. 3-2, for example, left section is the whole function tree with web user interface and we will travel it through this chapter.

SIGNAMAX

Fig. 3-1

3-1. Web Management Home Overview

After you login, the switch shows you the system information as Fig. 3-2. This page is default and tells you the basic information of the system, including "Model Name", "System Description", "Location", "Contact", "Device Name", "System Up Time", "Current Time", "BIOS Version", "Firmware Version", "Hardware-Mechanical Version", "Serial Number", "Host IP Address", "Host Mac Address", "Device Port", "RAM Size" and "Flash Size". With this information, you will know the software version used, MAC address, serial number, how many ports good and so on. This is helpful while malfunctioning.

Fig. 3-2

- The Information of Page Layout

- On the top side, it shows the front panel of the switch. In the front panel, the linked ports will display green; as to the ports, which are link off, they will be dark. For the optional modules, the slot will show only a cover plate if no module exists and will show a module if a module is present. The image of module depends on the one you inserted. The same, if disconnected, the port will show just dark, if linked, green. (See Fig. 3-3)

Fig. 3-3 port detail information

In Fig. 3-3, it shows the basic information of the clicked port. With this, you'll see the information about the port status, traffic status and bandwidth rating for egress and ingress respectively.

- On the left-top corner, there is a pull-down list for Auto Logout. For the sake of security, we provide auto-logout function to protect you from illegal user as you are leaving. If you do not choose any selection in Auto Logout list, it means you turn on the Auto Logout function and the system will be logged out automatically when no action on the device 3 minutes later. If OFF is chosen, the screen will keep as it is. Default is ON.
- On the left side, the main menu tree for web is listed in the page. They are hierarchical menu. Open the function folder, a sub-menu will be shown. The functions of each folder are described in its corresponded section respectively. When clicking it, the function is performed. The following list is the full function tree for web user interface.

3-1-1. System Information

Function name:
System Information

Function description:

Show the basic system information.
Parameter description:
Model name:
The model name of this device.
System description:
As it is, this tells what this device is. Here, it is "L2 Plus Managed Switch".

Location:

Basically, it is the location where this switch is put. User-defined.

Contact:

For easily managing and maintaining device, you may write down the contact person and phone here for getting help soon. You can configure this parameter through the device's user interface or SNMP.

Device name:
The name of the switch. User-defined. Default is 065-7841.
System up time:
The time accumulated since this switch is powered up. Its format is day, hour, minute, second.

Current time:
Show the system time of the switch. Its format: day of week, month, day, hours : minutes : seconds, year. For instance, Wed, Apr. 23, 12:10:10, 2004.

BIOS version:
The version of the BIOS in this switch.
Firmware version:
The firmware version in this switch.
Hardware-Mechanical version:
The version of Hardware and Mechanical. The figure before the hyphen is the version of electronic hardware; the one after the hyphen is the version of mechanical.

Serial number:
The serial number is assigned by the manufacturer.

Host IP address:
The IP address of the switch.
Host MAC address:
It is the Ethernet MAC address of the management agent in this switch.
Device Port:
Show all types and numbers of the port in the switch.
RAM size:
The size of the DRAM in this switch.
Flash size:
The size of the flash memory in this switch.

System Information

Model Name	065-7841
System Description	L2 Managed Switch
Location	
Contact	
Device Name	$\mathbf{0 6 5 - 7 8 4 1}$
System Up Time	Od 00:06:32
Current Time	Fri Apr 11 18:57:02 2008
BIOS Version	V1.04
Firmware Version	V0.94
Hardware-Mechanical Version	V1.01-V1.01
Serial Number	032104000002
Host IP Address	192.168 .2 .8
Host MAC Address	$00-1 d-79-11-50-02$
Device Port	24
RAM Size	512
Flash Size	128
Save	

Fig. 3-4

3-1-2. Account Configuration

In this function, only administrator can create, modify or delete the username and password. Administrator can modify other guest identities' password without confirming the password but it is necessary to modify the administrator-equivalent identity. Guest-equivalent identity can modify his password only. Please note that you must confirm administrator/guest identity in the field of Authorization in advance before configuring the username and password. Only one administrator is allowed to exist and unable to be deleted. In addition, up to 4 guest accounts can be created.

The default setting for user account is:

> Username : admin
> Password : admin

Fig. 3-5

3-1-3. Time Configuration

The switch provides manual and automatic ways to set the system time via NTP. Manual setting is simple and you just input "Year", "Month", "Day", "Hour", "Minute" and "Second" within the valid value range indicated in each item. If you input an invalid value, for example, 61 in minute, the switch will clamp the figure to 59.

NTP is a well-known protocol used to synchronize the clock of the switch system time over a network. NTP, an internet draft standard formalized in RFC 1305, has been adopted on the system is version 3 protocol. The switch provides four built-in NTP server IP addresses resided in the Internet and an user-defined NTP server IP address. The time zone is Greenwich-centered which uses the expression form of GMT+/- xx hours.

Function name:
Time
Function description:
Set the system time by manual input or set it by syncing from Time servers. The function also supports daylight saving for different area's time adjustment.

Parameter description:

Current Time:
Show the current time of the system.
Manual:
This is the function to adjust the time manually. Filling the valid figures in the fields of Year, Month, Day, Hour, Minute and Second respectively and press <Apply> button, time is adjusted. The valid figures for the parameter Year, Month, Day, Hour, Minute and Second are >=2000, 1-12, $1-31,0-23,0-59$ and $0-59$ respectively. Input the wrong figure and press <Apply> button, the device will reject the time adjustment request. There is no time zone setting in Manual mode.

$$
\begin{aligned}
& \text { Default: Year = 2000, } \quad \text { Month }=1, \quad \text { Day }=1 \\
& \text { Hour }=0, \quad \text { Minute }=0, \quad \text { Second }=0
\end{aligned}
$$

NTP:
NTP is Network Time Protocol and is used to sync the network time based Greenwich Mean Time (GMT). If use the NTP mode and select a built-in NTP time server or manually specify an user-defined NTP server as well as Time Zone, the switch will sync the time in a short after pressing <Apply> button. Though it synchronizes the time automatically, NTP does not update the time periodically without user's processing.
Time Zone is an offset time off GMT. You have to select the time zone first and then perform time sync via NTP because the switch will combine this time zone offset and updated NTP time to come out the local time, otherwise, you will not able to get the correct time. The switch supports configurable time zone from -12 to +13 step 1 hour.
Default Time zone: +8 Hrs.

Daylight Saving:

Daylight saving is adopted in some countries. If set, it will adjust the time lag or in advance in unit of hours, according to the starting date and the ending date. For example, if you set the day light saving to be 1 hour. When the time passes over the starting time, the system time will be increased one hour after one minute at the time since it passed over. And when the time passes over the ending time, the system time will be decreased one hour after one minute at the time since it passed over.

The switch supports valid configurable day light saving time is $-5 \sim+5$ step one hour. The zero for this parameter means it need not have to adjust current time, equivalent to in-act daylight saving. You don't have to set the starting/ending date as well. If you set daylight saving to be nonzero, you have to set the starting/ending date as well; otherwise, the daylight saving function will not be activated.

Default for Daylight Saving: 0.
The following parameters are configurable for the function Daylight Saving and described in detail.

Day Light Saving Start :
This is used to set when to start performing the day light saving time.
Mth:
Range is $1 \sim 12$.
Default: 1
Day:
Range is $1 \sim 31$.
Default: 1
Hour:
Range is $0 \sim 23$.
Default: 0

Day Light Saving End :
This is used to set when to stop performing the daylight saving time.
Mth:
Range is $1 \sim 12$.
Default: 1
Day:
Range is $1 \sim 31$.
Default: 1
Hour:
Range is $0 \sim 23$.
Default: 0

Fig. 3-6

3-1-4. IP Configuration

IP configuration is one of the most important configurations in the switch. Without the proper setting, network manager will not be able to manage or view the device. The switch supports both manual IP address setting and automatic IP address setting via DHCP server. When IP address is changed, you must reboot the switch to have the setting taken effect and use the new IP to browse for web management and CLI management.

Fig. 3-7 IP Address Configuration
Function name:
IP Configuration

Function description:

Set IP address, subnet mask, default gateway and DNS for the switch.

Parameter description:

DHCP Setting:
DHCP is the abbreviation of Dynamic Host Configuration Protocol. Here DHCP means a switch to turn ON or OFF the function.
The switch supports DHCP client used to get an IP address automatically if you set this function "Enable". When enabled, the switch will issue the request to the DHCP server resided in the network to get an IP address. If DHCP server is down or does not exist, the switch will issue the request and show IP address is under requesting, until the DHCP server is up. Before getting an IP address from DHCP server, the device will not continue booting procedures. If set this field "Disable", you'll have to input IP address manually. For more details about IP address and DHCP, please see the Section 2-1-5 "IP Address Assignment" in this manual.

Default: Disable

IP address:
Users can configure the IP settings and fill in new values if users set the DHCP function "Disable". Then, click <Apply> button to update.

When DHCP is disabled, Default: 192.168.1.1
If DHCP is enabled, this field is filled by DHCP server and will not allow user manually set it any more.
Subnet mask:
Subnet mask is made for the purpose to get more network address because any IP device in a network must own its IP address, composed of Network address and Host address, otherwise can't communicate with other devices each other. But unfortunately, the network classes A, B, and C are all too large to fit for almost all networks, hence, subnet mask is introduced to solve this problem. Subnet mask uses some bits from host address and makes an IP address looked Network address, Subnet mask number and host address. It is shown in the following figure. This reduces the total IP number of a network able to support, by the amount of 2 power of the bit number of subnet number (2^{\wedge} (bit number of subnet number)).

Subnet mask is used to set the subnet mask value, which should be the same value as that of the other devices resided in the same network it attaches.

For more information, please also see the Section 2-1-5 "IP Address Assignment" in this manual.
Default: 255.255.255.0
Default gateway:
Set an IP address for a gateway to handle those packets that do not meet the routing rules predefined in the device. If a packet does not meet the criteria for other pre-defined path, it must be forwarded to a default router on a default path. This means any packet with undefined IP address in the routing table will be sent to this device unconditionally.
Default: 192.168.1.254

DNS:

It is Domain Name Server used to serve the translation between IP address and name address.

The switch supports DNS client function to re-route the mnemonic name address to DNS server to get its associated IP address for accessing Internet. User can specify a DNS IP address for the switch. With this, the switch can translate a mnemonic name address into an IP address.

There are two ways to specify the IP address of DNS. One is fixed mode, which manually specifies its IP address, the other is dynamic mode, which is assigned by DHCP server while DHCP is enabled. DNS can help you easily remember the mnemonic address name with the meaningful words in it. Default is no assignment of DNS address.
Default: 0.0.0.0

3-1-5. Loop Detection

The loop detection is used to detect the presence of traffic. When switch receives packet's(looping detection frame) MAC address the same as oneself from port, show Loop detection happens. The port will be locked when it received the looping detection frames. If you want to resume the locked port, please find out the looping path and take off the looping path, then select the resume the locked port and click on "Resume" to turn on the locked ports.

Detection Port

Fig. 3-8
Function name:
Loop Detection
Function description:
Display whether switch open Loop detection.
Parameter description:
Port No:
Display the port number. The number is $1-24$.
Detection Port - Enable:
When Port No is chosen, and enable port' s Loop detection, the port can detect loop happens. When Port-No is chosen, enable port' s Loop detection, and the port detects loop happen, port will be Locked. If Loop did not happen, port maintains Unlocked.
Locked Port - Resume:
When Port No is chosen, enable port' s Loop detection, and the port detects loop happen, the port will be Locked. When choosing Resume, port locked will be opened and turned into unlocked. If not choosing Resume, Port maintains locked.

3-1-6. Management Policy

Through the management security configuration, the manager can do the strict setup to control the switch and limit the user to access this switch.

The following rules are offered for the manager to manage the switch:
Rule 1) : When no lists exists, then it will accept all connections.

Accept

Rule 2) : When only "accept lists" exist, then it will deny all connections, excluding the connection inside of the accepting range.

Accept Deny Accept Deny Accept

Rule 3) : When only "deny lists" exist, then it will accept all connections, excluding the connection inside of the denying range.

Deny

Accept Deny Accept Deny

Rule 4) : When both "accept and deny" lists exist, then it will deny all connections, excluding the connection inside of the accepting range.
Accept Deny Deny Deny Accept

Rule 5) : When both "accept and deny" lists exist, then it will deny all connections, excluding the connection inside of the accepting range and NOT inside of the denying range at the same time.

Function name:

Management Security Configuration
Function description:
The switch offers Management Security Configuration function. With this function, the manager can easily control the mode that the user connects to the switch. According to the mode, users can be classified into two types: Those who are able to connect to the switch (Accept) and those who are unable to connect to the switch (Deny). Some restrictions also can be placed on the mode that the user connect to the switch, for example, we can decide that which VLAN VID is able to be accepted or denied by the switch, the IP range of the user could be accepted or denied by the switch, the port that the user is allowed or not allowed to connect with the switch, or the way of controlling and connecting to the switch via Http, Telnet or SNMP.

Fig. 3-9

Fig. 3-10
Parameter description:
Add:
A new entry of Management Security Configuration can be created after the parameters as mentioned above had been setup and then press <Add> button. Of course, the existed entry also can be modified by pressing this button.

Delete:
Remove the existed entry of Management Security Configuration from the management security table.

Name:
A name is composed of any letter (A-Z, a-z) and digit (0-9) with maximal

VID:
The switch supports two kinds of options for managed valid VLAN VID, including "Any" and "Custom". Default is "Any". When you choose "Custom", you can fill in VID number. The valid VID range is $1 \sim 4094$.
IP Range:
The switch supports two kinds of options for managed valid IP Range, including "Any" and "Custom". Default is "Any". In case that" Custom" had been chosen, you can assigned effective IP range. The valid range is 0.0.0.0~255.255.255.255.

Incoming Port:
The switch supports two kinds of options for managed valid Port Range, including "Any" and "Custom". Default is "Any". You can select the ports that you would like them to be worked and restricted in the management security configuration if "Custom" had been chosen.

Access Type:

The switch supports two kinds of options for managed valid Access Type, including "Any" and "Custom". Default is "Any". "Http", "Telnet" and "SNMP" are three ways for the access and managing the switch in case that" Custom" had been chosen.

Action:
The switch supports two kinds of options for managed valid Action Type, including "Deny" and "Accept". Default is "Deny". When you choose "Deny" action, you will be restricted and refused to manage the switch due to the "Access Type" you choose. However, while you select "Accept" action, you will have the authority to manage the switch.

3-1-7. System Log

The System Log provides information about system logs, including information when the device was booted, how the ports are operating, when users logged in, when sessions timed out, as well as other system information.

Fig. 3-11
Function name:
System Log
Function description:
The Trap Log Data is displaying the log items including all SNMP Private Trap events, SNMP Public traps and user logs occurred in the system. In the report table, No., Time and Events are three fields contained in each trap record.

Parameter description:
No:
Display the order number that the trap happened.
Time:
Display the time that the trap happened.
Desc:
Displays a description event recorded in the System Log.
Clear:
Clear log data.

3-2. Port Configuration

Four functions, including Port Status, Port Configuration, Simple Counter and Detail Counter are contained in this function folder for port monitor and management. Each of them will be described in detail orderly in the following sections.

3-2-1. Port Configuration

Port Configuration is applied to change the setting of each port. In this configuration function, you can set/reset the following functions. All of them are described in detail below.

Fig. 3-12
Function name:
Port Configuration
Function description:
It is used to set each port's operation mode. The switch supports 3 parameters for each port. They are state, mode and flow control.

Parameter description:

Speed:
Set the speed and duplex of the port. In speed, if the media is 1 Gbps fiber, it is always 1000 Mbps and the duplex is full only. If the media is TP, the Speed/Duplex is comprised of the combination of speed mode, 10/100/1000Mbps, and duplex mode, full duplex and half duplex. The following table summarized the function the media supports.

Media type	NWay	Speed	Duplex
1000M TP	ON/OFF	$10 / 100 / 1000 \mathrm{M}$	Full for all, Half for 10/100
1000 F Fiber	ON/OFF	1000 M	Full

In Auto-negotiation mode, no default value. In Forced mode, default value depends on your setting.

Flow Control:

There are two modes to choose in flow control, including Enable and Disable. If flow control is set Enable, both parties can send PAUSE frame to the transmitting device(s) if the receiving port is too busy to handle. When it is set Disable, there will be no flow control in the port. It drops the packet if too much to handle.

Maximum Frame:
This module offer 1518~9600 (Bytes) length to make the long packet.
Excessive Collision Mode:
There are two modes to choose when excessive collision happen in halfduplex condition as below:

Discard: The "Discard" mode determines whether the MAC drop frames after an excessive collision has occurred. If set, a frame is dropped after excessive collisions. This is IEEE Std 802.3 half-duplex flow control operation.

Restart: The "Restart" mode determines whether the MAC retransmits frames after an excessive collision has occurred. If set, a frame is not dropped after excessive collisions, but the backoff sequence is restarted. This is a violation of IEEE Std 802.3, but is useful in non-dropping halfduplex flow control operation.

Description:
Description of device ports can not include " \# \% \& ' + .

3-2-2.Port Status

The function Port Status gathers the information of all ports' current status and reports it by the order of port number, media, link status, port state, AutoNegotiation status, speed/duplex, Rx Pause and Tx Pause. An extra media type information for the module ports 21 and 24 is also offered (See Fig. 3-14).

Port Status					
Port	Link	Speed	Flow Control		Description
			Rx	Tx	
1	up	1Gfdx	x	x	
2	down	Down	x	x	
3	down	Down	x	x	
4	down	Down	x	x	
5	down	Down	x	x	
6	down	Down	x	x	
7	down	Down	x	x	
8	down	Down	x	x	
9	down	Down	x	x	
10	down	Down	x	x	
11	down	Down	x	x	
12	down	Down	x	x	
13	down	Down	x	x	
14	down	Down	x	x	
15	down	Down	\times	\times	

Fig. 3-13

Function name:

Port Status
Function Description:
Report the latest updated status of all ports in this switch. When any one of the ports in the switch changes its parameter displayed in the page, it will be automatically refreshed the port current status about every 5 seconds.

Parameter Description:

Port:
Display the port number. The number is $1-24$. Both port $21 \sim 24$ are optional modules.

Link:
Show that if the link on the port is active or not. If the link is connected to a working-well device, the Link will show the link "Up"; otherwise, it will show "Down". This is determined by the hardware on both devices of the connection.

No default value.
Speed / Duplex Mode:
Display the speed and duplex of all port. There are three speeds 10 Mbps , 100 Mbps and 1000 Mbps supported for TP media, and the duplex supported is half duplex and full duplex. If the media is 1 Gbps fiber, it is 1000 Mbps supported only. The status of speed/duplex mode is determined by 1) the negotiation of both local port and link partner in "Auto Speed" mode or 2) user setting in "Force" mode. The local port has to be preset its capability.

Default: None, depends on the result of the negotiation.
Flow Control:
Show each port's flow control status.
There are two types of flow control in Ethernet, Backpressure for halfduplex operation and Pause flow control (IEEE802.3x) for full-duplex operation. The switch supports both of them.

Default: None, depends on the result of the negotiation.
Description:
network managers provide a description of device ports.

Port 21 Detail Information

Close

Fig. 3-14
Parameter description of Port 21 ~ Port 24:
Connector Type:
Display the connector type, for instance, UTP, SC, ST, LC and so on.

Fiber Type:
Display the fiber mode, for instance, Multi-Mode, Single-Mode.
Tx Central Wavelength:
Display the fiber optical transmitting central wavelength, for instance, $850 \mathrm{~nm}, 1310 \mathrm{~nm}, 1550 \mathrm{~nm}$ and so on.

Baud Rate:
Display the maximum baud rate of the fiber module supported, for instance, 10M, 100M, 1G and so on.

Vendor OUI:
Display the Manufacturer's OUI code which is assigned by IEEE.
Vendor Name:
Display the company name of the module manufacturer.

Vendor P/N:
Display the product name of the naming by module manufacturer.
Vendor Rev (Revision):
Display the module revision.
Vendor SN (Serial Number):
Show the serial number assigned by the manufacturer.
Date Code:
Show the date this SFP module was made.
Temperature:
Show the current temperature of SFP module.
Vcc:
Show the working DC voltage of SFP module.
Mon1(Bias) mA:
Show the Bias current of SFP module.
Mon2(TX PWR):
Show the transmit power of SFP module.
Mon3(RX PWR):
Show the receiver power of SFP module.

3-2-3. Simple Counter

The function of Simple Counter collects any information and provides the counting about the traffic of the port, no matter the packet is good or bad.

In the Fig. 3-15, the window can show all ports' counter information at the same time. Each data field has 20 -digit long. If the counting is overflow, the counter will be reset and restart counting. The data is updated every time interval defined by the user. The Refresh Interval is used to set the update frequency.

Port Statistics Overview							Auto-refresh \square Refresh		Clear
Port		ckets		tes		rors		ops	
\#	Receive	Transmit	Receive	Transmit	Receive	Transmit	Receive	Transmit	
$\underline{1}$	11778	5038	1951926	1544509	0	0	0	0	
$\underline{2}$	0	0	0	0	0	0	0	0	
$\underline{3}$	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	
$\underline{7}$	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	
$\underline{9}$	0	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	
13	0	0	0	0	0	0	0	0	
14	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	
16	0	0	0	0	0	0	0	0	
$\underline{17}$	0	0	0	0	0	0	0	0	
18	0	0	0	0	0	0	0	0	
$\underline{19}$	0	0	0	0	0	0	0	0	
$\underline{20}$	0	0	0	0	0	0	0	0	

Fig. 3-15

Function name:
Simple Counter
Function description:
Display the summary counting of each port's traffic, including Tx Byte, Rx Byte, Tx Packet, Rx Packet, Tx Collision and Rx Error Packet.

Parameters description:
Packet:
Transmit::
The counting number of the packet transmitted.
Receive:
The counting number of the packet received.
Bytes:
Transmit::
Total transmitted bytes.
Receive:
Total received bytes.

Error:

Transmit::
Number of bad packets transmitted.
Receive:
Number of bad packets received.
Drops
Transmit::
Number of packets transmitted drop.
Receive:
Number of packets received drop.
Auto-refresh:
The simple counts will be refreshed automatically on the UI screen.
Refresh:
The simple counts will be refreshed manually when user use mouse to click on "Refresh" button.

Clear:
The simple counts will be reset to zero when user use mouse to click on "Clear" button.

3-2-4. Detail Counter

The function of Detail Counter collects any information and provides the counting about the traffic of the port, no matter the packet is good or bad.

In the Fig. 3-16, the window can show only one port counter information at the same time. To see another port's counter, you have to pull down the list of Select, then you will see the figures displayed about the port you had chosen.

Each data field has 20 -digit long. If the counting is overflow, the counter will be reset and restart counting. The data is updated every time interval defined by the user. The valid range is 3 to 10 seconds. The Refresh Interval is used to set the update frequency. Default update time is 3 seconds.

Fig. 3-16

Function name:

Detail Counter
Function description:
Display the detailed counting number of each port's traffic. In the Fig. 3-14, the window can show all counter information of each port at one time.

Parameter description:

Rx Packets:
The counting number of the packet received.

RX Octets:

Total received bytes.
Rx High Priority Packets:
Number of Rx packets classified as high priority.

Rx Low Priority Packets:
Number of Rx packets classified as low priority.
Rx Broadcast:
Show the counting number of the received broadcast packet.
Rx Multicast:
Show the counting number of the received multicast packet.
Tx Packets:
The counting number of the packet transmitted.

TX Octets:

Total transmitted bytes.
Tx High Priority Packets:
Number of Tx packets classified as high priority.
Tx Low Priority Packets:
Number of Tx packets classified as low priority.
Tx Broadcast:
Show the counting number of the transmitted broadcast packet.
Tx Multicast:
Show the counting number of the transmitted multicast packet.

Rx 64 Bytes:

Number of 64-byte frames in good and bad packets received.
Rx 65-127 Bytes:
Number of $65 \sim 126$-byte frames in good and bad packets received.
Rx 128-255 Bytes:
Number of 127 ~ 255-byte frames in good and bad packets received. Rx 256-511 Bytes:

Number of 256 ~ 511-byte frames in good and bad packets received.

Rx 512-1023 Bytes:

Number of 512 ~ 1023-byte frames in good and bad packets received.
Rx 1024-Bytes:
Number of 1024-max_length-byte frames in good and bad packets received.

Tx 64 Bytes:
Number of 64-byte frames in good and bad packets transmitted.

Tx 65-127 Bytes:
Number of 65 ~ 126-byte frames in good and bad packets transmitted.
Tx 128-255 Bytes:
Number of $127 \sim 255$-byte frames in good and bad packets transmitted.
Tx 256-511 Bytes:
Number of 256 ~ 511-byte frames in good and bad packets transmitted.
Tx 512-1023 Bytes:
Number of 512 ~ 1023-byte frames in good and bad packets transmitted.
Tx 1024-Bytes:
Number of 1024-max_length-byte frames in good and bad packets transmitted.

Rx CRC/Alignment:
Number of Alignment errors and CRC error packets received.
Rx Undersize:
Number of short frames (<64 Bytes) with valid CRC.
Rx Oversize:
Number of long frames(according to max_length register) with valid CRC.
Rx Fragments:
Number of short frames (< 64 bytes) with invalid CRC.
Rx Jabber:
Number of long frames(according tomax_length register) with invalid CRC.
Rx Drops:
Frames dropped due to the lack of receiving buffer.

Rx Errors:

Number of the error packet received.
Tx Collisions:
Number of collisions transmitting frames experienced.

Tx Drops:

Number of frames dropped due to excessive collision, late collision, or frame aging.

Tx FIFO Drops:
Number of frames dropped due to the lack of transmitting buffer.
Auto-refresh:
The detail counts will be refreshed automatically on the UI screen.
Refresh:

Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch The detail counts will be refreshed manually when user use mouse to click on "Refresh" button.

Clear:

The detail counts will be reset to zero when user use mouse to click on "Clear" button.

3-3. VLAN

The switch supports Tag-based VLAN (802.1Q) and Port-based VLAN. Support 4094 active VLANs and VLAN ID 1~4094. VLAN configuration is used to partition your LAN into small ones as your demand. Properly configuring it, you can gain not only improving security and increasing performance but greatly reducing VLAN management.

3-3-1. VLAN Mode

Function name:

VLAN Mode Setting

Function description:

The VLAN Mode Selection function includes five modes: Port-based, Tagbased, Metro Mode, Double-tag and Disable, you can choose one of them by pulling down list and selecting an item. Then, click <Apply> button, the settings will take effect immediately.

Parameter description:

VLAN Mode:
Port-based:
Port-based VLAN is defined by port. Any packet coming in or outgoing from any one port of a port-based VLAN will be accepted. No filtering criterion applies in port-based VLAN. The only criterion is the physical port you connect to. For example, for a port-based VLAN named PVLAN-1 contains port members Port 1\&2\&3\&4. If you are on the port 1, you can communicate with port $2 \& 3 \& 4$. If you are on the port 5, then you cannot talk to them. Each port-based VLAN you built up must be assigned a group name. This switch can support up to maximal 24 port-based VLAN groups.

Tag-based:
Tag-based VLAN identifies its member by VID. This is quite different from port-based VLAN. If there are any more rules in ingress filtering list or egress filtering list, the packet will be screened with more filtering criteria to determine if it can be forwarded. The switch supports supplement of 802.1q. For more details, please see the section VLAN in Chapter 3.

Each tag-based VLAN you built up must be assigned VLAN name and VLAN ID. Valid VLAN ID is 1-4094. User can create total up to 4094 Tag VLAN groups.

Fig. 3-17

3-3-2. Tag-based Group

Function name:

Tag-based Group Configuration

Function description:

It shows the information of existed Tag-based VLAN Groups, You can also easily create, edit and delete a Tag-based VLAN group by pressing <Add>, <Edit> and <Delete> function buttons. User can add a new VLAN group by inputting a new VLAN name and VLAN ID.

Parameter description:

VLAN Name:
The name defined by administrator is associated with a VLAN group. Valid letters are A-Z, a-z, 0-9, " - " and "_" characters. The maximal length is 15 characters.

VLAN ID:
VLAN identifier. Each tag-based VLAN group has a unique VID. It appears only in tag-based and Double-tag mode.

IGMP Proxy:
IGMP proxy enables the switch to issue IGMP host messages on behalf of hosts that the system discovered through standard IGMP interfaces. The system acts as a proxy for its hosts. This switch can be set IGMP function "Enable" or "Disable" by VLAN group. If the VLAN group IGMP proxy is disabled, the switch will stop the exchange of IGMP messages in the VLAN group members. If the VLAN group IGMP proxy is enabled, the switch will support the exchange of IGMP messages in the VLAN group members and follow up IGMP proxy router port configuration, which connects to a router closer to the root of the tree. This interface is the upstream interface. The router on the upstream interface should be running IGMP. You enable IGMP on the interfaces that connect the system to its hosts that are farther away from the root of the tree. These interfaces are known as downstream interfaces. Please refer to 3-15-1 for detail IGMP Proxy function description.

Member Port:
This is used to enable or disable if a port is a member of the new added VLAN, "Enable" means it is a member of the VLAN. Just tick the check box $(\boxed{\nabla})$ beside the port x to enable it.

Signamax ${ }^{\text {TM }} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch
Tag-Based VLAN Memberships Configuration

VLAN Name			Port Members																							
 Delete VLAN Na VLAN ID		IGMP Proxy	1	2	3	4	5	6	7	8	9	10	11	$12 \mid$	13	14	15	16	17	18	19	20	21	22	$\begin{array}{l\|l\|} 23 & 24 \\ \hline 23 \quad 24 \end{array}$	
Default			1	2	3	4	5	67		89		$9 \quad 10$	11	121	1314		15	16	17	18	19	20	21	22		
	1	Disable																								
Add ne	VAN	elete																								

Fig. 3-18
Add new VLAN:
Please click on <Add new VLAN> to create a new Tag-based VLAN. Input the VLAN name as well as VID, configure the SYM-VLAN function and choose the member by ticking the check box beside the port No., then, press the <Apply> button to have the setting taken effect.

Create VLAN Group

VLAN ID	$\mathbf{1 0 0}$
VLAN Name	VLAN-1

IGMP Proxy
Enable
Member Port

1. \square 2. \square
2. \square
3.
4.
5. \square
6.
7. \square
9.10. 11.12. \square 13. 14 . \square 15. \square 16.17.18. \square 19.20. 222. 2324. \square
\square

Fig. 3-19
Delete Group:
Just press the <Delete> button to remove the selected group entry from the Tag-based group table.

Fig. 3-20

3-3-3. Port-based Group

Function name:

Port-based Group Configuration
Function description:
It shows the information of the existed Port-based VLAN Groups. You can easily create, edit and delete a Port-based VLAN group by pressing <Add>,
<Edit> and <Delete> function buttons. User can add a new VLAN group by inputting a new VLAN name.

Parameter description:

VLAN Name:
The name defined by administrator is associated with a VLAN group. Valid letters are A-Z, a-z, 0-9, " - " and "_" characters. The maximal length is 15 characters.

Member Port:
This is used to enable or disable if a port is a member of the new added VLAN, "Enable" means it is a member of the VLAN. Just tick the check box ($\boxed{\square})$ beside the port x to enable it.

Fig. 3-21
Add new VLAN:
Create a new Port-based VLAN. Input the VLAN name and choose the member by ticking the check box beside the port No., then, press the <Apply> button to have the setting taken effect.

Fig. 3-22

Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch

Delete Group:
Just press the <Delete> button to remove the selected group entry from the Port-based group table.

Fig. 3-23

3-3-4. Ports

Function name:

VLAN Port Configuration
Function description:
In VLAN Tag Rule Setting, user can input VID number to each port. The range of VID number is from 1 to 4094. User also can choose ingress filtering rules to each port. There are two ingress filtering rules which can be applied to the switch. The Ingress Filtering Rule 1 is "forward only packets with VID matching this port's configured VID". The Ingress Filtering Rule 2 is "drop untagged frame". You can also select the Role of each port as Access, Trunk, or Hybrid.

Parameter description:

Port 1-24:
Port number.

VLAN Aware:

Based on IEEE 802.1Q VLAN tag to forward packet
Ingress Filtering:
Discard other VLAN group packets, only forward this port joined VLAN group packets

Frame Type:
All: Forward all tagged and untagged packets
Tagged: Forward tagged packets only and discard untagged packets PVID:

This PVID range will be 1-4094. Before you set a number x as PVID, you have to create a Tag-based VLAN with VID x. For example, if port x receives an untagged packet, the switch will apply the PVID (assume as VID y) of port x to tag this packet, the packet then will be forwarded as the tagged packet with VID y.
Role:
This is an egress rule of the port. Here you can choose Access, Trunk or Hybrid. Trunk means the outgoing packets must carry VLAN tag header. Access means the outgoing packets carry no VLAN tag header. If packets have double VLAN tags, one will be dropped and the other will still be left. As to Hybrid, it is similar to Trunk, and both of them will tagout. When the port is set to Hybrid, its packets will be untagged out if the VID of the outgoing packets with tag is the same as the one in the field of Untag VID of this port.

Untag VID:
Valid range is $1 \sim 4094$. It works only when Role is set to Hybrid.

Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch

VLAN Port Configuration						
Port \#	vLAN Aware	Ingress Filtering	Frame Type	Pvid	Role	Untag VID
1	\square	\square	All \vee	1	Access ${ }^{2}$	0
2	\square	\square	All \vee	1	Access ${ }^{\text {r }}$	0
3	\square	\square	All \vee	1	Access ${ }^{\text {r }}$	0
4	\square	\square	All \checkmark	1	Access ${ }^{\text {r }}$	0
5	\square	\square	All \vee	1	Access ${ }^{\text {V }}$	0
6	\square	\square	All v	1	Access ${ }^{2}$	0
7	\square	\square	All \vee	1	Access ${ }^{2}$	0
8	\square	\square	All \vee	1	Access ${ }^{\text {v }}$	0
9	\square	\square	All \vee	1	Access ${ }^{\text {v }}$	0
10	\square	\square	All \vee	1	Access ${ }^{\text {r }}$	0
11	\square	\square	All \vee	1	Access ${ }^{2}$	0
12	\square	\square	All \vee	1	Access ${ }^{\text {V }}$	0
13	\square	\square	All \vee	1	Access ${ }^{\text {V }}$	0
14	\square	\square	All \vee	1	Access ${ }^{\text {v }}$	0
15	\square	\square	All \vee	1	Access ${ }^{\text {r }}$	0
16	\square	\square	All \vee	1	Access ${ }^{\text {v }}$	0

Fig. 3-24

3-3-5. Management

Function name:
Management
Function description:
To assign a specific VLAN for management purpose.
Parameter description:
VID: Specific Management VLAN ID.

Management VLAN	
VLAN ID 	

Fig. 3-25

3-4. MAC

MAC Table Configuration gathers many functions, including MAC Table Information, MAC Table Maintenance, Static Forward, Static Filter and MAC Alias, which cannot be categorized to some function type. They are described below.

3-4-1. Mac Address Table

Function name:

MAC Address Table Information
Function Description:
This function can allow the user to set up the processing mechanism of MAC Table. An idle MAC address exceeding MAC Address Age-out Time will be removed from the MAC Table. The range of Age-out Time is 10-1000000 seconds, and the setup of this time will have no effect on static MAC addresses.

In addition, the learning limit of MAC maintenance is able to limit the amount of MAC that each port can learn.

Parameter description:

Aging Time:
Delete a MAC address idling for a period of time from the MAC Table, which will not affect static MAC address. Range of MAC Address Aging Time is $10-1000000$ seconds. The default Aging Time is 300 seconds.

Disable automatic aging:
Stop the MAC table aging timer, the learned MAC address will not age out automatically

Auto:

Enable this port MAC address dynamic learning mechanism.
Disable:
Disable this port MAC address dynamic learning mechanism, only support static MAC address setting.

Secure:

Disable this port MAC address dynamic learning mechanism and copy the dynamic learning packets to CPU

Save:
Save MAC Address Table configuration
Reset:
Reset MAC Address Table configuration

MAC Address Table Configuration Aging Configuration			
Age time		seconds	
Disable automatic aging	\square		
MAC Table Learning			
Port Members			
1\| $2 \times 3\|3\| 4\|5\|$	${ }^{1} 7$	\|10	11
Disable ○○○○○○○○○○○○○○○○○○○○○○○○			
Secure 000000000000000000000000			
Save Reset			

Fig. 3-26

3-4-2. Static Filter

Function name:
Static Filter

Function Description:

Static Filter is a function that denies the packet forwarding if the packet's MAC Address is listed in the filtering Static Filter table. User can very easily maintain the table by filling in MAC Address, VID (VLAN ID) and Alias fields individually. User also can delete the existed entry by clicking <Delete> button.
Parameter description:
MAC:
It is a six-byte long Ethernet hardware address and usually expressed by hex and separated by hyphens. For example,

$$
00-40-\mathrm{C} 7-\mathrm{D} 6-00-02
$$

VID:
VLAN identifier. This will be filled only when tagged VLAN is applied.
Valid range is $1 \sim 4094$.
Alias:
MAC alias name you assign.

Fig. 3-27

3-4-3. Static Forward

Function Name:

Static Forward
Function Description:
Static Forward is a function that allows the user in the static forward table to access a specified port of the switch. Static Forward table associated with a specified port of a switch is set up by manually inputting MAC address and its alias name.

When a MAC address is assigned to a specific port, all of the switch's traffics sent to this MAC address will be forwarded to this port.

For adding a MAC address entry in the allowed table, you just need to fill in four parameters: MAC address, associated port, VID and Alias. Just select the existed MAC address entry you want and click <Delete> button, you also can remove it.

Parameter description:

MAC:
It is a six-byte long Ethernet hardware address and usually expressed by hex and separated by hyphens. For example,

$$
00-40-\mathrm{C} 7-\mathrm{D} 6-00-01
$$

Port No:
Port number of the switch. It is $1 \sim 24$.
VID:
VLAN identifier. This will be filled only when tagged VLAN is applied.
Valid range is $1 \sim 4094$.
Alias:
MAC alias name you assign.

Fig. 3-28

3-4-4. MAC Alias

Function name:
MAC Alias
Function description:
MAC Alias function is used to let you assign MAC address a plain English name. This will help you tell which MAC address belongs to which user in the illegal access report. At the initial time, it shows all pairs of the existed alias name and MAC address.

There are three MAC alias functions in this function folder, including MAC Alias Add, MAC Alias Edit and MAC Alias Delete. You can click <Create/Edit> button to add/modify a new or an existed alias name for a specified MAC address, or mark an existed entry to delete it. Alias name must be composed of A-Z, a-z and 0-9 only and has a maximal length of 15 characters.

Fig. 3-29

Parameter description:
MAC Address:
It is a six-byte long Ethernet hardware address and usually expressed by hex and separated by hyphens. For example,

$$
00-40-\mathrm{C} 7-\mathrm{D} 6-00-01
$$

Alias:
MAC alias name you assign.
Note: If there are too many MAC addresses learned in the table, we recommend you inputting the MAC address and alias name directly.

3-4-5. MAC Table

Function name:

Dynamic MAC Table
Function Description:
Display the static or dynamic learning MAC entry and the state for the selected port.
Parameter description:
Type: Dynamic or Static.
VLAN:
VLAN identifier. This will be filled only when tagged VLAN is applied.
Valid range is $1 \sim 4094$.
MAC address:
Display the MAC address of one entry you selected from the searched MAC entries table.

Port:

The port that exists in the searched MAC Entry.
Refresh:
Refresh function can help you to see current MAC Table status.
Clear:
To clear the selected entry.
Previous Page:
Move to the previous page.
Next Page:
Move to the next page.

Fig. 3-30

3-5. GVRP

GVRP is an application based on Generic Attribute Registration Protocol (GARP), mainly used to automatically and dynamically maintain the group membership information of the VLANs. The GVRP offers the function providing the VLAN registration service through a GARP application. It makes use of GARP Information Declaration (GID) to maintain the ports associated with their attribute database and GARP Information Propagation (GIP) to communicate among switches and end stations. With GID information and GIP, GVRP state machine maintain the contents of Dynamic VLAN Registration Entries for each VLAN and propagate these information to other GVRP-aware devices to setup and update their knowledge database, the set of VLANs associated with currently active members, and through which ports these members can be reached.

In GVRP Configuration function folder, there are three functions supported, including GVRP Config, GVRP Counter and GVRP Group explained below.

3-5-1. Config

Function name:

GVRP Configuration
Function description:
In the function of GVRP Config, it is used to configure each port's GVRP operation mode, in which there are seven parameters needed to be configured described below.
Parameter description:
GVRP State:
This function is simply to let you enable or disable GVRP function. You can pull down the list and click the <Downward> arrow key to choose "Enable" or "Disable". Then, click the <Apply> button, the system will take effect immediately.

Join Time:
Used to declare the Join Time in unit of centisecond. Valid time range: $20-100$ centisecond, Default: 20 centisecond.

Leave Time:
Used to declare the Leave Time in unit of centisecond. Valid time range: $60-300$ centisecond, Default: 60 centisecond.

Leave All Time:
A time period for announcement that all registered device is going to be de-registered. If someone still issues a new join, then a registration will be kept in the switch. Valid range: 1000-5000 unit time, Default: 1000 unit time.

Default Applicant Mode:
The mode here means the type of participant. There are two modes, normal participant and non-participant, provided for the user's choice.

Normal:
It is Normal Participant. In this mode, the switch participates normally in GARP protocol exchanges. The default setting is Normal.

Non-Participant:
It is Non-Participant. In this mode, the switch does not send or reply any GARP messages. It just listens messages and reacts for the received GVRP BPDU.

Default Registrar Mode:
The mode here means the type of Registrar. There are three types of parameters for registrar administrative control value, normal registrar, fixed registrar and forbidden registrar, provided for the user's choice.

It is Normal Registration. The Registrar responds normally to incoming GARP messages. The default setting is Normal.

Fixed:
It is Registration Fixed. The Registrar ignores all GARP messages, and all members remain in the registered (IN) state.

Forbidden:
It is Registration Forbidden. The Registrar ignores all GARP messages, and all members remain in the unregistered (EMPTY) state.
Restricted Mode:
This function is used to restrict dynamic VLAN be created when this port received GVRP PDU. There are two modes, disable and enable, provided for the user's choice.

Disabled:
In this mode, the switch dynamic VLAN will be created when this port received GVRP PDU. The default setting is Normal.

Enabled:
In this mode, the switch does not create dynamic VLAN when this port received GVRP PDU. Except received dynamic VLAN message of the GVRP PDU is an existed static VLAN in the switch, this port will be added into the static VLAN members dynamically.

GVRP Configuration							
			GVRP State		Disabled \vee	Apply	
Port	Join Time	Leave Time	Leaveall Time	Default	plicant Mode	Default Registrar Mode	Restricted Mode
1	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \checkmark
2	20	60	1000	Normal	\checkmark	Normal \checkmark	Disabled \checkmark
3	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \vee
4	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \vee
5	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \vee
6	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \vee
7	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \vee
8	20	60	1000	Normal	\checkmark	Normal V	Disabled \vee
9	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \checkmark
10	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \checkmark
11	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \vee
12	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \checkmark
13	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \checkmark
14	20	60	1000	Normal	\checkmark	Normal \vee	Disabled \checkmark

Fig. 3-31

3-5-2. Counter

Function name:
GVRP Counter
Function description:
All GVRP counters are mainly divided into Received and Transmitted two categories to let you monitor the GVRP actions. Actually, they are GARP packets.

Fig. 3-32

Parameter description:
Received:
Total GVRP Packets:
Total GVRP BPDU is received by the GVRP application.
Invalid GVRP Packets:
Number of invalid GARP BPDU is received by the GARP application.
LeaveAll Message Packets:
Number of GARP BPDU with Leave All message is received by the GARP application.
JoinEmpty Message Packets:
Number of GARP BPDU with Join Empty message is received by the GARP application.
JoinIn Message Packets:
Number of GARP BPDU with Join In message is received by the GARP application.
LeaveEmpty Message Packets:
Number of GARP BPDU with Leave Empty message is received by the GARP application.

Number of GARP BPDU with Empty message is received by the GARP application.

Transmitted:
Total GVRP Packets:
Total GARP BPDU is transmitted by the GVRP application.
Invalid GVRP Packets:
Number of invalid GARP BPDU is transmitted by the GVRP application.
LeaveAll Message Packets:
Number of GARP BPDU with Leave All message is transmitted by the GARP application.

JoinEmpty Message Packets:
Number of GARP BPDU with Join Empty message is transmitted by the GARP application.

JoinIn Message Packets:
Number of GARP BPDU with Join In message is transmitted by the GARP application.

LeaveEmpty Message Packets:
Number of GARP BPDU with Leave Empty message is transmitted by the GARP application.

Empty Message Packets:
Number of GARP BPDU with Empty message is transmitted by the GARP application.

3-5-3. Group

Function name:
GVRP Group VLAN Information
Function description:
To show the dynamic group member and their information.
Parameter description:
VID:
VLAN identifier. When GVRP group creates, each dynamic VLAN group owns its VID. Valid range is $1 \sim 4094$.

Member Port:
Those are the members belonging to the same dynamic VLAN group.
Edit Administrative Control:
When you create GVRP group, you can use Administrative Control function to change Applicant Mode and Registrar Mode of GVRP group member.

Fig. 3-33

3-6. QoS(Quality of Service) Configuration

The switch support four QoS queues per port with strict or weighted fair queuing scheduling. There are 24 QoS Control Lists (QCL) for advance programmable QoS classification, based on IEEE 802.1p, Ethertype, VID, IPv4/IPv6 DSCP and UDP/TCP ports and ranges.

High flexibility in the classification of incoming frames to a QoS class. The QoS classification looks for information up to Layer 4, including IPv4 and IPv6 DSCP, IPv4 TCP/UDP port numbers, and user priority of tagged frames. This QoS classification mechanism is implemented in a QoS control list (QCL). The QoS class assigned to a frame is used throughout the device for providing queuing, scheduling, and congestion control guarantees to the frame according to what was configured for that specific QoS class.

The switch support advanced memory control mechanisms providing excellent performance of all QoS classes under any traffic scenario, including jumbo frame. A super priority queue with dedicated memory and strict highest priority in the arbitration. The ingress super priority queue allows traffic recognized as CPU traffic to be received and queued for transmission to the CPU even when all the QoS class queues are congested.

3-6-1. Ports

Function name:

Port QoS Configuration
Function description:
To configure each port QoS behavior. Four QoS queue per port with strict or weighted fair queuing scheduling. There are 24 QoS Control Lists (QCL) for advance programmable QoS classification, based on IEEE 802.1p, Ethertype, VID, IPv4/IPv6 DSCP and UDP/TCP ports and ranges.
Parameter description:
Number of Classes:

$$
1 / 2 / 4
$$

Port:
User can choose the port (1~24) respectively with Priority Class on Per Port Priority function.

Default Class:
User can set up High Priority or Low Priority for each port respectively.
Low / Normal / Medium / High
QCL:
The number of QCL rule 1~24, each port have to apply one of the QCL rule for QoS behavior
User priority:
The user priority value 0~7 (3 bits) is used as an index to the eight QoS class values for VLAN tagged or priority tagged frames.
Queuing Mode:
There are two Scheduling Method, Strict Priority and Weighted Fair. Default is Strict Priority. After you choose any of Scheduling Method, please click Apply button to be in operation.

Queue Weighted:
There are four queues per port and four classes weighted number (1 / 2 / $4 / 8$) for each queues, you can select the weighted number when the scheduling method be set to "Weighted Fair" mode.

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

Fig. 3-34

3-6-2. Qos Control List

Function name:
Qos Control List Configuration
Function description:
The switch support four QoS queues per port with strict or weighted fair queuing scheduling. There are 24 QoS Control Lists (QCL) for advance programmable QoS classification, based on IEEE 802.1p, Ether Type, VID, IPv4/IPv6 DSCP and UDP/TCP ports and ranges.

Fig. 3-35

QCE Configuration:
The QCL consists of 12 QoS Control Entries (QCEs) that are searched from the top of the list to the bottom of the list for a match. The first matching QCE determines the QoS classification of the frame. The QCE ordering is therefore important for the resulting QoS classification algorithm. If no matching QCE is found, the default QoS class is used in the port QoS configuration.

QCE Configuration

QCE Type	Ethernet Type \vee	
Ethernet Type Value	Ox FFFF	
Traffic Class	Low	
	Low Normal Medium High	

Fig. 3-36

QCE Configuration

Fig. 3-37

Fig. 3-38

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch
QCE Configuration

QCE Type	UDP/TCP Port \vee
UDP/TCP Port	Specific \vee
TCP/UDP Port No.	
Traffic Class	Low

Apply
Fig. 3-39
QCE Configuration

QCE Type	DSCP	\checkmark	
DSCP Value	63		
Traffic Class	Low	\checkmark	

Apply
Fig. 3-40

Fig. 3-41

QCE Configuration

QCE Type	Tag Priority	\checkmark
Tag Priority 0 Class	Normal \vee	
Tag Priority 1 Class	Low	
Tag Priority 2 Class	Low	
Tag Priority 3 Class	Normal \vee	
Tag Priority 4 Class	Medium \vee	
Tag Priority 5 Class	Medium \vee	
Tag Priority 6 Class	High v	
Tag Priority 7 Class	High v	

Apply

Fig. 3-42

Parameter description:
QCL\#:
QCL number : 1~24
QCE Type:
Ethernet Type / VLAN ID / UDP/TCP Port / DSCP / ToS / Tag Priority
Ethernet Type Value:
The configurable range is $0 x 600 \sim 0 x F F F F$. Well known protocols already assigned EtherType values. The commonly used values in the EtherType field and corresponding protocols are listed below:

Ethertype (Hexadecimal)	Protocol
0×0800	IP, Internet Protocol
0×0801	X.75 Internet
0×0802	NBS Internet
0×0803	ECMA Internet
0×0804	Chaosnet
0×0805	X.25 Level 3
0×0806	ARP, Address Resolution Protocol.
0×0808	Frame Relay ARP [RFC1701]

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

0x6559	Raw Frame Relay [RFC1701]
0x8035	DRARP, Dynamic RARP. RARP, Reverse Address Resolution Protocol.
0x8037	Novell Netware IPX
0x809B	EtherTalk (AppleTalk over Ethernet)
0x80D5	IBM SNA Services over Ethernet
0x 80F3	AARP, AppleTalk Address Resolution Protocol.
0x8100	IEEE Std 802.1Q - Customer VLAN Tag Type.
0×8137	IPX, Internet Packet Exchange.
0x 814C	SNMP, Simple Network Management Protocol.
0x86DD	IPv6, Internet Protocol version 6.
0x880B	PPP, Point-to-Point Protocol.
0x 880C	GSMP, General Switch Management Protocol.
0×8847	MPLS, Multi-Protocol Label Switching (unicast).
0x8848	MPLS, Multi-Protocol Label Switching (multicast).
0x8863	PPPoE, PPP Over Ethernet (Discovery Stage).
0x8864	PPPoE, PPP Over Ethernet (PPP Session Stage).
0x88BB	LWAPP, Light Weight Access Point Protocol.
0x88CC	LLDP, Link Layer Discovery Protocol.
0x8E88	EAPOL, EAP over LAN.
0x9000	Loopback (Configuration Test Protocol)
0xFFFF	reserved.

VLAN ID:
The configurable VID range:1~4094

UDP/TCP Port:

To select the UDP/TCP port classification method by Range or Specific.

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch UDP/TCP Port Range:

The configurable ports range: 0~65535
You can refer to following UDP/TCP port-numbers information.
http://www.iana.org/assignments/port-numbers
UDP/TCP Port No.:
The configurable specific port value: 0~65535
DSCP Value:
The configurable DSCP value: 0~63
Traffic Class:
Low / Normal / Medium / High

3-6-3.Rate Limiters

Function name:
Rate Limit Configuration
Function description:
Each port includes an ingress policer, and an egress shaper, which can limit the bandwidth of received and transmitted frames. Ingress policer or egress shaper operation is controlled per port in the Rate Limit Configuration.

Fig. 3-43

Parameter description:
Port \#:
Port number.
Policer Enabled:
Policer enabled to limit ingress bandwidth by policer rate.
Policer Rate:
The configurable policer rate range:
500 Kbps ~ 1000000 Kbps
1 Mbps ~ 1000 Mbps

Policer Unit:

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch
There are two units for ingress policer rate limit: kbps / Mbps

Shaper Enabled:

Shaper enabled to limit egress bandwidth by shaper rate.

Shaper Rate:

The configurable shaper rate range:
$500 \mathrm{Kbps} \sim 1000000 \mathrm{Kbps}$
1 Mbps ~ 1000 Mbps
Shaper Unit:
There are two units for egress shaper rate limit: kbps / Mbps

3-6-4.Storm Control

Function name:
Storm Control Configuration
Function description:
The switch support storm ingress policer control function to limit the Flooded, Multicast and Broadcast to prevent storm event happen.
Parameter description:
Frame Type:
There three frame types of storm can be controlled: Flooded unicast / Multicast / Broadcast

Status:
Enable/Disable Selection: \square means enabled, \square means disabled Rate(pps):

Refer to the following rate configurable value list, the unit is Packet Per Second (pps).
1 / 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1K / 2K / 4K / 8K / 16K / 32K / 64K / 128K / 256K / 512K / 1024K

Fig. 3-44

3-6-5.Wizard

Function name:
Wizard
Function description:
The QCL configuration Wizard is targeted on user can easy to configure the QCL rules for QoS configuration. The wizard provide the typical network application rules, user can apply these application easily.

Welcome to the QCL Configuration Wizard!
Please select an action:Set up Port Policies
Group ports into several types according to different QCL policies.
Set up Typical Network Application Rules
Set up the specific QCL for different typical network application quality control.
Set up TOS Precedence Mapping
Set up the traffic class mapping to the precedence part of TOS (3 bits) when receiving IPw4/IPv6 packets.
Set up VLAN Tag Priority Mapping
Set up the traffic class mapping to the user priority value (3 bits) when receiving VLAN tagged packets.
To continue, click Next.

Next >
Fig. 3-45
Parameter description:
Please select an Action:
User need to select one of action from following items, then click on <Next> to finish QCL configuration:

- Set up Port Policies
- Set up Typical Network Application Rules
- Set up TOS Precedence Mapping
- Set up VLAN Tag Priority Mapping

Next:
Go to next step.
Cancel:
Abort current configuration back to previous step.
Back:
Back to previous screen.

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

Fig. 3-46 Set up Port Policies
Parameter description:
QCL ID:
QoS Control List (QCL): 1~24
Port Member:
Port Member: 1~24

Finished!

The QCL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

Wizard Again
Finish

Fig. 3-47 Set up Port Policies
Parameter description:
Wizard Again:
Click on the <Wizard Again> , back to QCL Configuration Wizard.
Finish:
When you click on <Finish>, the parameters will be set according to the wizard configuration and shown on the screen, then ask you to click on <Apply> for changed parameters confirmation.

Fig. 3-48 Set up Port Policies Finish

```
Set up Typical Network Application Rules
Set up the specific QCL for different typical network application quality control by selecting the network application type for your rule:
o Audio and Video
\squareQuickTime 4 Server \MSN Messenger Phone \ Yahoo Messenger Phone \Napster \Real Audio
- Games
\squareBlizzard Battlenet(Diablo2 and StarCraft) }\square\mathrm{ Fighter Ace II }\square\mathrm{ Quake2 }\square\mathrm{ Quake3 }\squareMSN Game Zone
- User Definition
\squareEthernet Type }\square\mathrm{ VLANID }\square\mathrm{ UDP/TCP Port }\square\mathrm{ DSCP
```

Fig. 3-49 Set up Typical Network Application Rules

```
Set up Typical Network Application Rules
Set up the specific QCL for different typical network application quality control by selecting the network application type for your rule:
o Audio and Video
\squareQuickTime 4 Server }\square\mathrm{ MSN Messenger Phone }\square\mathrm{ Yahoo Messenger Phone }\square\mathrm{ Napster }\square\mathrm{ Real Audio
- Games
\squareBlizzard Battlenet (Diablo2 and StarCraft) \Fighter Ace || \Quake2 \squareQuake3 \MSN Game Zone
o User Definition
\squareEthernet Type }\square\mathrm{ VLANID }\square\mathrm{ UDP/TCP Port }\square\mathrm{ DSCP
```

Fig. 3-50 Set up Typical Network Application Rules

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

Fig. 3-51 Set up Typical Network Application Rules
Parameter description:
Audio and Video:
QuickTime 4 Server I MSN Messenger Phone I Yahoo Messenger Phone I Napster / Real Audio

Games:
Blizzard Battlenet (Diablo2 and StarCraft) I Fighter Ace II I Quake2 I
Quake3 / MSN Game Zone
User Definition:
Ethernet Type I VLAN ID I UDP/TCP Port / DSCP
Ethernet Type Value:
Type Range: 0x600~0xFFFF
VLAN ID:
VLAN ID Range: 1~4094
UDP/TCP Port:
Two Mode: Range / Specific
UDP/TCP Port Range:
Port Range: 0~65535
UDP/TCP Port No.:
Port Range: 0~65535
DSCP Value:
DSCP Value Range: 0~63

Set up Typical Network Application Rules

According to your selection on the previous page, this wizard will create specific QCEs (QoS Control Entries) automatically.

First select the QCL ID for these QCEs, and then select the traffic class. Different parameter options are displayed, depending on your selection.

QCL ID	1	\checkmark
Traffic Class	Low	\checkmark

Fig. 3-52 Set up Typical Network Application Rules
Parameter description:
QCL ID:
QCL ID Range: 1~24
Traffic Class:
There are four classes: Low / Normal / Medium / High
Finished!

The QCL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

Wizard Again
Finish

Fig. 3-53 Set up Typical Network Application Rules

QoS Control List Configuration			
QCL \# 1 v			
QCE Type	Type Value	Traffic Class	
UDP/TCP Port	6970-6970 (QuickTime 4 Server)	Low	థ̣\|
UDP/TCP Port	6901-6901 (MSN Messenger Phone)	Low	$\begin{aligned} & \text { థ(1) } \\ & \text { e(x) } \end{aligned}$
UDP/TCP Port	5055-5055 (Yahoo Messenger Phone)	Low	$\begin{aligned} & \text { థ(1) } \\ & \text { (ex) } \end{aligned}$
UDP/TCP Port	6699-6699 (Napster)	Low	
UDP/TCP Port	6970-7170 (Real Audio)	Low	$\begin{aligned} & \text { థ® } \\ & \text { ©®® } \\ & \oplus \end{aligned}$

Fig. 3-54 Set up Typical Network Application Rules Finish

Fig. 3-55 Set up Typical Network Application Rules Finish

Fig. 3-56 Set up Typical Network Application Rules Finish
Parameter description:
QCL \#:
QoS Control List (QCL): 1~24

Set up TOS Precedence Mapping	
Set up the traffic class mapping to the precedence part of TOS (3 bits) when receiving IPv4/IPv6 packets.	
OCL ID	1 v
ToS Precedence 0 Class	Low \vee
ToS Precedence 1 Class	Low v
ToS Precedence 2 Class	Low v
ToS Precedence 3 Class	Low v
ToS Precedence 4 Class	Low v
ToS Precedence 5 Class	Low v
ToS Precedence 6 Class	Low v
ToS Precedence 7 Class	Low ${ }^{\text {v }}$
Cancel < Back	xt >

Fig. 3-57 Set up TOS Precedence Mapping

Parameter description:
QCL ID:
QoS Control List (QCL): 1~24
TOS Precedence 0~7 Class:
Low / Normal / Medium / High

Finished!

The QCL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

Wizard Again
Finish

Fig. 3-58 Set up TOS Precedence Mapping

Fig. 3-59 Set up TOS Precedence Mapping Finish

Fig. 3-60 Set up VLAN Tag Priority Mapping
Parameter description:
QCL ID:
QoS Control List (QCL): 1~24
Tag Priority 0~7 Class:
Low / Normal / Medium / High

Finished!

The QCL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

> Wizard Again

Fig. 3-61 Set up VLAN Tag Priority Mapping

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

Fig. 3-62 Set up VLAN Tag Priority Mapping Finish

3-7. SNMP Configuration

Any Network Management System (NMS) running the Simple Network Management Protocol (SNMP) can manage the Managed devices equipped with SNMP agent, provided that the Management Information Base (MIB) is installed correctly on the managed devices. The SNMP is a protocol that is used to govern the transfer of information between SNMP manager and agent and traverses the Object Identity (OID) of the management Information Base (MIB), described in the form of SMI syntax. SNMP agent is running on the switch to response the request issued by SNMP manager.

Basically, it is passive except issuing the trap information. The switch supports a switch to turn on or off the SNMP agent. If you set the field SNMP "Enable", SNMP agent will be started up. All supported MIB OIDs, including RMON MIB, can be accessed via SNMP manager. If the field SNMP is set "Disable", SNMP agent will be de-activated, the related Community Name, Trap Host IP Address, Trap and all MIB counters will be ignored.

Function name:

SNMP Configuration

Function description:

This function is used to configure SNMP settings, community name, trap host and public traps as well as the throttle of SNMP. A SNMP manager must pass the authentication by identifying both community names, then it can access the MIB information of the target device. So, both parties must have the same community name. Once completing the setting, click <Apply> button, the setting takes effect.

Parameters description:

SNMP:
The term SNMP here is used for the activation or de-activation of SNMP. Default is Enable.
Get/Set/Trap Community:
Community name is used as password for authenticating if the
requesting network management unit belongs to the same community group. If they both don't have the same community name, they don't belong to the same group. Hence, the requesting network management unit can not access the device with different community name via SNMP protocol; If they both have the same community name, they can talk each other.

Community name is user-definable with a maximum length of 15 characters and is case sensitive. There is not allowed to put any blank in the community name string. Any printable character is allowable.

The community name for each function works independently. Each function has its own community name. Say, the community name for GET only works for GET function and can't be applied to other function such as SET and Trap.

Default SNMP function : Enable
Default community name for GET: public
Default community name for SET: private
Default community name for Trap: public
Default Set function : Enable
Default trap host IP address: 0.0.0.0
Default port number :162
Trap:
In the switch, there are 6 trap hosts supported. Each of them has its own community name and IP address; is user-definable. To set up a trap host means to create a trap manager by assigning an IP address to host the trap message. In other words, the trap host is a network management unit with SNMP manager receiving the trap message from the managed switch with SNMP agent issuing the trap message. 6 trap hosts can prevent the important trap message from losing.

For each public trap, the switch supports the trap event Cold Start, Warm Start, Link Down, Link Up and Authentication Failure Trap. They can be enabled or disabled individually. When enabled, the corresponded trap will actively send a trap message to the trap host when a trap happens. If all public traps are disabled, no public trap message will be sent. As to the Enterprise (no. 6) trap is classified as private trap, which are listed in the Trap Alarm Configuration function folder.

Default for all public traps: Enable.

Fig. 3-63 Community and trap host setting

3-8. ACL

The 065-7841 switch access control list (ACL) is probably the most commonly used object in the IOS. It is used for packet filtering but also for selecting types of traffic to be analyzed, forwarded, or influenced in some way.

The ACLs are divided into EtherTypes. IPv4, ARP protocol, MAC and VLAN parameters etc. Here we will just go over the standard and extended access lists for TCP/IP. As you create ACEs for ingress classification, you can assign a policy for each port, the policy number is 1-8, however, each policy can be applied to any port. This makes it very easy to determine what type of ACL policy you will be working with.

3-8-1.Ports

Function name:
ACL Port Configuration

Function description:

The switch ACL function support up to 128 Access Control Entries (ACEs), using the shared 128 ACEs for ingress classification. You can create an ACE and assign this ACE for each port with <Any> or assign this ACE for a policy or assign this ACE for a port. There are 8 policies, each port can select one of policy, then decides which of the following actions would take according to the packet's IPv4, EtherType, ARP Protocol, MAC Parameters and VLAN parameters:

- Packet Deny or Permit
- Rate Limiter (Unit: pps)
- Port Copy (1-24)

Parameter description:
Port \#:
Port number: 1~24
Policy ID:
Policy ID range:1~8
Action:
Permit or Deny forwarding the met ACL packets
Rate Limiter ID:
Disabled: Disable Rate Limitation
Rate Limiter ID Range: 1~16. To select one of rate limiter ID for this port,
it will limit met ACL packets by rate limiter ID configuration.
Port Copy:
Disabled: Disable to copy the met ACL packets to specific port
Port number: 1~24. Copy the met ACL packets to the selected port

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch
Counter: The counter will increase from initial value 0 , when this port received one of the met ACL packet the counter value will increase +1

ACL Ports Configuration

Port \#	Policy ID	Action	Rate Limiter ID	Port Copy	Counter
1	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
2	$1 \vee$	Permit \vee	Disabled \vee	Disabled \vee	0
3	$1 \vee$	Permit \vee	Disabled \vee	Disabled \vee	0
4	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
5	$1 \vee$	Permit \vee	Disabled \vee	Disabled \vee	0
6	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
7	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
8	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
9	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \checkmark	0
10	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
11	$1 \vee$	Permit \vee	Disabled \vee	Disabled \vee	0
12	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
13	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
14	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
15	$1 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
16	$1 \vee$	Permit \checkmark	Disabled \checkmark	Disabled \checkmark	0

Fig. 3-64

3-8-2.Rate Limiters

Function name:
ACL Rate Limiter Configuration
Function description:
There are 16 rate limiter ID. You can assign one of the limiter ID for each port.
The rate limit configuration unit is Packet Per Second (pps).
Parameter description:
Rate Limiter ID:
ID Range: 1~16
Rate(pps):
1 / 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1K / 2K / 4K / 8K / 16K / 32K / 64K / 128K / 256K / 512K / 1024K

ACL Rate Limiter Configuration		
Rate Limiter ID	ate	
1	1	
2	1	\checkmark
3	1	\checkmark
4	1	\checkmark
5	1	\checkmark
6	1	\checkmark
7	1	\checkmark
8	1	\checkmark
9	1	\checkmark
10	1	\checkmark
11	1	\checkmark
12	1	\checkmark
13	1	\checkmark
14	1	\checkmark
15	1	\checkmark
16	1	\checkmark

Fig. 3-65

3-8-3.Access Control List

Function name:
ACL Rate Limiter Configuration
Function description:
The switch ACL function support up to 128 Access Control Entries (ACEs), using the shared 128 ACEs for ingress classification. You can create an ACE and assign this ACE for each port with <Any> or assign this ACE for a policy or assign this ACE for a port. There are 8 policies, each port can select one of policy, then decides which of the Permit/Deny, Rate Limitation and Port Copy actions would take according to the ACL configuration packet's IPv4, EtherType, ARP Protocol, MAC Parameters and VLAN parameters.

Parameter description:

Ingress Port:
Configurable Range: Any / Policy 1-8 / Port 1-24
Any: Apply this ACE rule for each port ingress classification
Policy 1-8: Apply this ACE rule for specific policy
Port 1-24: Apply this ACE rule for specific port ingress classification

Fig. 3-66 Ingress Port

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Manaqed Switch

Fig. 3-67 Ingress Port

Fig. 3-68

Parameter description:
Frame Type:
Range: Any / Ethernet Type / ARP / IPv4
Any: It is including all frame type
Ethernet Type: It is including all Ethernet frame type
ARP: It is including all ARP protocol frame type
IPv4: It is including all IPv4 protocol frame type
ACE Configuration

Ingress Port	Any $\quad v$	
Frame Type	Any	\checkmark
	Anve	
	Ethernet Type	
	ARP	
	IPv4	

Action	Permit \vee
Rate Limiter	Disabled \checkmark
Port Copy	Disabled \vee
Counter	

MAC Parameters

DMAC Filter	Any \vee

VLAN Parameters

VLAN ID Filter	Any $\quad \vee$
Tag Priority	Any \vee

Apply
Fig. 3-69 Frame Type

Signamax ${ }^{\text {TM }} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch

ACE Configuration

Ingress Port	Any \vee
Frame Type	

Action	Permit \vee Rate Limiter
	Disabled \vee
Port Copy	Disabled \vee
Counter	0

MAC Parameters

SMAC Filter	Any	\vee
	DMAC Filter	Any

VLAN Parameters

VLAN ID Filter	Any	\checkmark
Tag Priority	Any \vee	

Ethernet Type Parameters

EtherType Filter	Any $\quad \vee$

Apply
Fig. 3-70

MAC Parameters

SMAC Filter	Specific \vee
SMAC Value	$00-00-00-00-00-01$
DMAC Filter	Any \vee

Fig. 3-71

Ethernet Type Parameters

EtherType Filter	Specific
Ethernet Type Value	Ox FFFF

Fig. 3-72

Fig. 3-73 ARP

Fig. 3-74 ARP

ARP Parameters

ARP/RARP	Other \checkmark	
Request/Reply	Any ARP RARP	
Sender IP Filter		
Target IP Filter	Other	

Fig. 3-75 ARP
ARP Parameters

ARP/RARP	Any $\quad \vee$ Request/Reply
Sender IP Filter	Reply \quadAnv Target IP Filter
Request Reply	

Fig. 3-76 ARP
ARP Parameters

ARP/RARP	Any	\checkmark
Request/Reply	Any	\vee
Sender IP Filter	Any $\quad \vee$	
Target IP Filter	Any	Host Network

Fig. 3-77 ARP
ARP Parameters

| ARP/RARP | Any \vee |
| :--- | :--- | :--- |
| Request/Reply | Any $\vee \vee$ |
| Sender IP Filter | Host $\vee \vee$ |
| Sender IP Address | 192.168 .1 .1 |
| Target IP Filter | Any \vee |

Fig. 3-78 ARP

ARP Parameters

ARP/RARP	Any \vee
Request/Reply	Any \vee
Sender IP Filter	Network \vee
Sender IP Address	192.168 .1 .1
Sender IP Mask	255.255 .255 .0
Target IP Filter	Any \vee

Fig. 3-79 ARP
ARP Parameters

ARP/RARP	Any V
Request/Reply	Any \checkmark
Sender IP Filter	Any
Target IP Filter	Any
	Any
	Host Network
Apply	

Fig. 3-80 ARP
ARP Parameters

ARP/RARP	Any \vee
Request/Reply	Any \vee
Sender IP Filter	Any \vee
Target IP Filter	Host \vee
Target IP Address	192.168 .1 .254

Fig. 3-81 ARP
ARP Parameters

ARP/RARP	Any V
Request/Reply	Any v
Sender IP Filter	Any \vee
Target IP Filter	Network \vee
Target IP Address	192.168.1.254
Target IP Mask	255.255.255.0

Fig. 3-82 ARP

| ARP SMAC Match | Any \vee |
| :--- | :--- | :--- |
| RARP DMAC Match | Any |
| IP/Ethernet Length 0
 1
 IP Any \vee
 Ethernet Any \vee ln | |

Fig. 3-83 ARP

| ARP SMAC Match | Any \vee |
| :--- | :--- | :--- |
| RARP DMAC Match | Any \vee |
| IP/Ethernet Length | Any |
| IP | 0 |
| | |
| Ethernet | Any \vee |

Fig. 3-84 ARP

ARP SMAC Match	Any \vee
RARP DMAC Match	Any \vee
IP/Ethernet Length	Any \vee
IP	Any
Ethernet	0
1	

Fig. 3-85 ARP

ARP SMAC Match	Any \vee
RARP DMAC Match	Any \vee
IP/Ethernet Length	Any \vee
IP	Any \vee
Ethernet	Anv
	1

Fig. 3-86 ARP

| ARP SMAC Match | Any \vee |
| :--- | :--- | :--- |
| RARP DMAC Match | Any \vee |
| IP/Ethernet Length | Any \vee |
| IP | Any \vee |
| Ethernet | Any \vee |
| | Anv |
| | 0 |
| 1 | |

Fig. 3-87 ARP

Fig. 3-88 IPv4
IP Parameters

IP Protocol Filter	Any	\checkmark	
IP TTL	Anv	\vee	
IP Fragment	ICMP		
IP Option			
UDP			
TCP			
SIP Filter	Other	\checkmark	
DIP Filter	Any	\checkmark	

Fig. 3-89 IPv4
ICMP Parameters

ICMP Type Filter	Any	\vee
	ICMP Code Filter	Any

Fig. 3-90 IPv4

ICMP Parameters

ICMP Type Filter	Any
ICMP Code Filter	And Specific

Fig. 3-91 IPv4
ICMP Parameters

ICMP Type Filter	Specific \vee
	ICMP Type Value
	255
ICMP Code Filter	
	Any

Fig. 3-92 IPv4
ICMP Parameters

ICMP Type Filter	Any
	\vee
ICMP Code Filter	Any $\quad \vee$
	Any
	Specific

Fig. 3-93 IPv4
ICMP Parameters

ICMP Type Filter	Any	\checkmark
ICMP Code Filter	Specific	
ICMP Code Value	255	

Fig. 3-94 IPv4
UDP Parameters

Source Port Filter	Any	\checkmark
Dest. Port Filter	Any	\checkmark

Fig. 3-95 IPv4 UDP Parameters

Source Port Filter	Any $\quad \vee$
Dest. Port Filter	Any

Fig. 3-96 IPv4

UDP Parameters

Source Port Filter	Specific \vee
Source Port No.	0
Dest. Port Filter	
	Any

Fig. 3-97 IPv4

UDP Parameters

Source Port Filter	Range	
Source Port Range	0	-65535
Dest. Port Filter	Any	\vee

Fig. 3-98 IPv4
UDP Parameters

Source Port Filter	Any	\checkmark
Dest. Port Filter	Any $\quad \vee$	
	Any Specific Range	

Fig. 3-99 IPv4

UDP Parameters

Source Port Filter	Any $\quad \checkmark$
Dest. Port Filter	Specific \vee
Dest. Port No.	0

Fig. 3-100 IPv4 UDP Parameters

Source Port Filter	Any	\checkmark
Dest. Port Filter	Range	
Dest. Port Range	0	65535

Fig. 3-101 IPv4
TCP Parameters

Source Port Filter	Any	\checkmark
Dest. Port Filter	Any	\checkmark
TCP FIN	Any \vee	
TCP SYN	Any \vee	
TCP RST	Any \vee	
TCP PSH	Any \vee	
TCP ACK	Any \vee	
TCP URG	Any \vee	

Fig. 3-102 IPv4
TCP Parameters

Source Port Filter	Any	\checkmark
Dest. Port Filter	Any	
TCP FIN	Specific Range	
TCP SYN	Any ${ }^{2}$	
TCP RST	Any \vee	
TCP PSH	Any \vee	
TCP ACK	Any \vee	
TCP URG	Any \vee	

Fig. 3-103 IPv4 TCP Parameters

Source Port Filter	Any	\checkmark
Dest. Port Filter	Any	\checkmark
TCP FIN	Any	
TCP SYN	Specific	
TCP RST	Any ${ }^{\text {V }}$	
TCP PSH	Any \vee	
TCP ACK	Any \vee	
TCP URG	Any \vee	

Fig. 3-104 IPv4

TCP Parameters

Source Port Filter	Specific \downarrow
Source Port No.	0
Dest. Port Filter	Specific \vee
Dest. Port No.	0
TCP FIN	Any \vee
TCP SYN	Any \vee
TCP RST	Any \vee
TCP PSH	Any \vee
TCP ACK	Any \vee
TCP URG	Any \vee

Fig. 3-105 IPv4
TCP Parameters

Source Port Filter	Range \checkmark	
Source Port Range	0	65535
Dest. Port Filter	Range	
Dest. Port Range	0	65535
TCP FIN	Any \checkmark	
TCP SYN	Any \vee	
TCP RST	Any \vee	
TCP PSH	Any \vee	
TCP ACK	Any \vee	
TCP URG	Any \checkmark	

Fig. 3-106 IPv4 TCP Parameters

Source Port Filter	Any	\checkmark
Dest. Port Filter	Any	
TCP FIN	Any \vee	
TCP SYN	Anv	
TCP RST	0 1	
TCP PSH	Any V	
TCP ACK	Any \vee	
TCP URG	Any v	

Fig. 3-107 IPv4

IP Parameters

IP Protocol Filter	Other \vee	
IP Protocol Value	255	
IP TTL	Any	\checkmark
IP Fragment	Any v	
IP Option	Any \checkmark	
SIP Filter	Any	\checkmark
DIP Filter	Any	\checkmark

Fig. 3-108 IPv4

IP Parameters

IP Protocol Filter	Any V	
IP TTL	Any	\checkmark
IP Fragment	Anv	
IP Option	Non-zeroZero	
SIP Filter	Any	\checkmark
DIP Filter	Any	\checkmark

Fig. 3-109 IPv4 IP Parameters

IP Protocol Filter	Any v	
IP TTL	Any	\checkmark
IP Fragment	Any \vee	
IP Option	Any	
SIP Filter	Yes No	\checkmark
DIP Filter	Any	\checkmark

Fig. 3-110 IPv4
IP Parameters

IP Protocol Filter	Any \vee	
IP TTL	Any	\checkmark
IP Fragment	Any \vee	
IP Option	Any \vee	
SIP Filter	Any	\checkmark
DIP Filter	No	\checkmark

Fig. 3-111 IPv4

IP Parameters

IP Protocol Filter	Any \checkmark
IP TTL	Any v
IP Fragment	Any v
IP Option	Any \vee
SIP Filter	Any \vee
DIP Filter	Any Host
	Network

Apply
Fig. 3-112 IPv4

IP Protocol Filter	Any v
IP TTL	Any v
IP Fragment	Any \vee
IP Option	Any \vee
SIP Filter	Host v
SIP Address	192.168.1.1
DIP Filter	Any v

Fig. 3-113 IPv4

IP Parameters

IP Protocol Filter	Any \checkmark
IP TTL	Any v
IP Fragment	Any \vee
IP Option	Any \vee
SIP Filter	Network \vee
SIP Address	192.168.1.1
SIP Mask	255.255.255.0
DIP Filter	Any v

Fig. 3-114 IPv4
IP Parameters

IP Protocol Filter	Any V
IP TTL	Any \downarrow
IP Fragment	Any \checkmark
IP Option	Any \vee
SIP Filter	Any v
DIP Filter	Any v
	Any
Apply	Host Network

Fig. 3-115 IPv4 IP Parameters

IP Protocol Filter	Any V
IP TTL	Any v
IP Fragment	Any \vee
IP Option	Any v
SIP Filter	Any V
DIP Filter	Host \vee
DIP Address	192.168.1.254

Fig. 3-116 IPv4
IP Parameters

IP Protocol Filter	Any \checkmark
IP TTL	Any v
IP Fragment	Any \vee
IP Option	Any \vee
SIP Filter	Any V
DIP Filter	Network \vee
DIP Address	192.168.1.254
DIP Mask	255.255.255.0

Fig. 3-117 IPv4

Fig. 3-118 Action

Signamax ${ }^{\text {TM }} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch

ACE Configuration

Ingress Port	Any	\vee
	Frame Type	
	Any	\checkmark

MAC Parameters

DMAC Filter	Any \vee

Fig. 3-119 Rate Limiter

Fig. 3-120 Port Copy

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

ACE Configuration

Ingress Port	Any	\vee	
	Frame Type	Any	\vee

Action	Permit \vee
Rate Limiter	
Disabled \vee	
Port Copy	Disabled \vee
Counter	0

MAC Parameters

VLAN Parameters

VLAN ID Filter	Any
Tag Priority	Any \vee

Fig. 3-121 DMAC Filter

ACE Configuration

Ingress Port	Any	\vee	
Frame Type	Any	\checkmark	

Action	Permit \vee Rate Limiter
	Disabled \vee
Port Copy	Disabled \vee
Counter	0

MAC Parameters

DMAC Filter	Any \vee

VLAN Parameters

VLAN ID Filter	Any $\quad \checkmark$	
Tag Priority	Anv	
		Specific

Apply
Fig. 3-122 VLAN ID Filter
VLAN Parameters

VLAN ID Filter	Specific \vee
VLAN ID	
	1
Tag Priority	Any \vee

Fig. 3-123 VLAN ID Filter

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

Ingress Port	Any	\vee	
Frame Type	Any	\checkmark	

Action	Permit \vee
Rate Limiter	Disabled \vee
Port Copy	Disabled
Counter	0

MAC Parameters

Apply

VLAN Parameters

Fig. 3-124 Tag Priority
Function name:
ACE Configuration

Function description:

The switch ACL function support up to 128 Access Control Entries (ACEs), using the shared 128 ACEs for ingress classification. You can create an ACE and assign this ACE for each port with <Any> or assign this ACE for a policy or assign this ACE for a port. There are 8 policies, each port can select one of policy, then decides which of the Permit/Deny, Rate Limitation and Port Copy actions would take according to the ACL configuration packet's IPv4, EtherType, ARP Protocol, MAC Parameters and VLAN parameters.

Parameter description:

Ingress Port:
Range: Any / Policy 1-8 / Port 1-24
Any: Apply this ACE rule for each port ingress classification
Policy 1-8: Apply this ACE rule for specific policy
Port 1-24: Apply this ACE rule for specific port ingress classification
IP Protocol Filter:
Range: Any / Ethernet Type / ARP / IPv4
Any: It is including all frame type
Ethernet Type: It is including all Ethernet frame type
ARP: It is including all ARP protocol frame type
IPv4: It is including all IPv4 protocol frame type
MAC Parameters: $($ When Frame Type = Any)

Range: Any / MC / BC / UC
Any: It is including all destination MAC address
MC: It is including all Multicast MAC address
BC: It is including all Broadcast MAC address
UC: It is including all Unicast MAC address
MAC Parameters: (When Frame Type = Ethernet Type)
SMAC Filter:
Range: Any / Specific
Any: It is including all source MAC address
Specific: It is according to SMAC Value specific the source MAC address

DMAC Filter:
Range: Any / MC / BC / UC / Specific
Any: It is including all destination MAC address
MC: It is including all Multicast MAC address
BC: It is including all Broadcast MAC address
UC: It is including all Unicast MAC address
Specific: It is according to DMAC Value specific the destination MAC address

MAC Parameters: (When Frame Type = ARP)
SMAC Filter:
Range: Any / Specific
Any: It is including all source MAC address Specific: It is according to SMAC Value specific the source MAC address

DMAC Filter:
Range: Any / MC / BC / UC
Any: It is including all destination MAC address
MC: It is including all Multicast MAC address
BC: It is including all Broadcast MAC address
UC: It is including all Unicast MAC address

MAC Parameters: (When Frame Type = IPv4)
DMAC Filter:
Range: Any / MC / BC / UC
Any: It is including all destination MAC address
MC: It is including all Multicast MAC address
BC: It is including all Broadcast MAC address
UC: It is including all Unicast MAC address

Ether Type Parameters: (When Frame Type = Ethernet Type)
EtherType Filter:
Range: Any / Specific
Any: It is including all Ethernet frame type Specific: It is according to specific Ethernet Type Value.
Ethernet Type Value:
The Ethernet Type Range: 0x600-0xFFFF

ARP Parameters: (When Frame Type = ARP)
ARP/RARP:
Range: Any / ARP / RARP / Other
Any: Including all ARP/RARP protocol frame types
ARP: Including all ARP protocol frame types
RARP: Including all RARP frame types
Other: Including other frame types except ARP/RARP protocol
Request/Reply:
Range: Any / Request / Reply
Any: Including all ARP/RARP Request and Reply
Request: Including all ARP/RARP request frames
Reply: Including all ARP/RARP reply frames
Sender IP Filter:
Range: Any / Host / Network
Any: Including all sender IP address
Host: Only one specific sender host IP address
Network: A specific IP subnet segment under the sender IP mask
Sender IP Address:
Default: 192.168.1.1
Sender IP Mask:
Default: 255.255.255.0
Target IP Filter:
Range: Any / Host / Network
Any: Including all target IP address
Host: Only one specific target host IP address
Network: A specific IP subnet segment under the target IP mask
Target IP Address:
Default: 192.168.1.254
Target IP Mask:
Default: 255.255.255.0
ARP SMAC Match:
Range: Any / 0 / 1
Any:

0 :
The ingress ARP frames where the source MAC address is not equal SMAC under MAC parameter setting

1 :
The ingress ARP frames where the source MAC address is equal SMAC address under MAC parameter setting

RARP DMAC Match:
Range: Any / 0 / 1
Any:
Both 0 and 1
0 :
The ingress RARP frames where the Destination MAC address is not equal DMAC address under MAC parameter setting
1 :
The ingress RARP frames where the Destination MAC address is equal DMAC address under MAC parameter setting

IP/Ethernet Length:
Range: Any / 0 / 1
Any:
Both 0 and 1
0 :
The ingress ARP/PARP frames where the Hardware size is not equal " 0×6 " or the Protocol size is not equal " 0×4 "
1 :
The ingress ARP/PARP frames where the Hardware size is equal " 0×6 " and the Protocol size is " 0×4 "

IP:
Range: Any / 0 / 1
Any:

Both 0 and 1

0 :
The ingress ARP/PARP frames where Protocol type is not equal "0x800"
$1:$
The ingress ARP/PARP frames where Protocol type is equal " 0×800 "

Ethernet:
Range: Any / 0 / 1
Any:
Both 0 and 1
0 :
The ingress ARP/PARP frames where Hardware type is not equal "0x100"
$1:$
The ingress ARP/PARP frames where Hardware type is equal " 0×100 "

IP Parameters: (When Frame Type = IPv4 and IP Protocol Filter = Any)
IPTTL: (Time To Live)
How many routers a datagram can pass through. Each router decrements this value by 1 until it reaches 0 when the datagram is discarded. This keeps misrouted datagrams from remaining on the Internet forever

Range: Any / Non-zero / Zero
Any: Including all conditions for IPTTL
Non-Zero: Including IPTTL is Non-Zero
Zero: Including IPTTL is zero
IP Fragment: (IP Fragmentation Flag)
Controls datagram fragmentation together with the identification field. The flags indicate whether the datagram may be fragmented, whether the datagram is fragmented, and whether the current fragment is the final one.

Range: Any / Yes / No
Any: Including all IP fragment case
Yes: The ingress frame is fragmented packet
No: The ingress frames is not fragmented packet
IP Option:
A list of optional specifications for security restrictions, route recording, and source routing. Not every datagram specifies an options field.

Range: Any / Yes / No
Any: Including all IP option case
Yes: The ingress frame is specified IP options
No: The ingress frame is not specified IP options
SIP Filter: (SIP Source IP Address)
Range: Any / Host / Network
Any: Including all source IP address
Host: Only one specific source host IP address
Network: A specific IP subnet segment under the source IP mask
SIP Address:
Default: 192.168.1.1
SIP Mask:
Default: 255.255.255.0
DIP Filter: (DIP Destination IP Address)
Range: Any / Host / Network
Any: Including all destination IP address Host: Only one specific destination host IP address mask

DIP Address:
Default: 192.168.1.254
DIP Mask:
Default: 255.255.255.0
IP Parameters: (Frame Type = IPv4 and IP Protocol Filter = ICMP)
ICMP Type Filter:
Range: Any / Specific
Any: Including all types of ICMP type values
Specific: According to following ICMP type value setting for ingress classification

ICMP Type Value:
Range: 0-255
ICMP Code Filter:
Range: Any / Specific
Any: Including all of ICMP code values
Specific: According to following ICMP code value setting for ingress classification

ICMP Code Value:
Range: 0-255
IP Parameters: (Frame Type = IPv4 and IP Protocol Filter = UDP)
Source Port Filter:
Range: Any / Specific / Range
Any: Including all UDP source ports
Specific:
According to following Source Port No. setting for ingress classification
Range:
According to following Source Port Range setting for ingress classification

Source Port No.:
Range: 0-65535
Source Port Range.:
Range: 0-65535
Dest. Port Filter:
Range: Any / Specific / Range
Any: Including all UDP destination ports Specific:

According to following Dest. Port No. setting for ingress

Range:
According to following Dest. Port Range setting for ingress classification

Dest. Port No.: (Destination Port Number)
Range: 0-65535
Dest. Port Range.: (Destination Port Range)
Range: 0-65535
IP Parameters: $($ Frame Type $=I P v 4$ and IP Protocol Filter = TCP $)$
Source Port Filter:
Range: Any / Specific / Range
Any: Including all TCP source ports
Specific:
According to following Source Port No. setting for ingress classification
Range:
According to following Source Port Range setting for ingress classification

Source Port No.:
Range: 0-65535
Source Port Range.:
Range: 0-65535
Dest. Port Filter:
Range: Any / Specific / Range
Any: Including all TCP destination ports
Specific:
According to following Dest. Port No. setting for ingress classification
Range:
According to following Dest. Port Range setting for ingress classification

Dest. Port No.:
Range: 0-65535

Dest. Port Range.:

Range: 0-65535
TCP FIN:
TCP Control Bit FIN: Means No more data from sender
Range: Any / 0 / 1
Any: Including all TCP FIN case
0 : The TCP control bit FIN is 0
1: The TCP control bit FIN is 1

TCP Control Bit SYN: Means Synchronize sequence numbers Range: Any / 0 / 1

Any: Including all TCP SYN case
0 : The TCP control bit SYN is 0
1: The TCP control bit SYN is 1
TCP RST:
TCP Control Bit RST: Means Reset the connection
Range: Any / 0 / 1
Any: Including all TCP RST case
0 : The TCP control bit RST is 0
1: The TCP control bit RST is 1
TCP PSH:
TCP Control Bit PSH: Means Push Function
Range: Any / 0 / 1
Any: Including all TCP PSH case
0 : The TCP control bit PSH is 0
1: The TCP control bit PSH is 1
TCP ACK:
TCP Control Bit ACK: Means Acknowledgment field significant
Range: Any / 0 / 1
Any: Including all TCP ACK case
0 : The TCP control bit ACK is 0
1: The TCP control bit ACK is 1
TCP URG:
TCP Control Bit URG: Means Urgent Pointer field significant
Range: Any / 0 / 1
Any: Including all TCP URG case
0 : The TCP control bit URG is 0
1: The TCP control bit URG is 1
IP Protocol Value:
The IP Protocol Value is TCP options may occupy space at the end of the TCP header and are a multiple of 8 bits in length. Currently defined options include (kind indicated in octal):
0 - End of option list
1 - No-Operation
Range: Any / 0 / 1
Any: Including all IP protocol value case

1: The IP protocol value is 1

[^0]DIP Filter: (DIP Destination IP Address)
Range: Any / Host / Network
Any: Including all destination IP address Host: Only one specific destination host IP address Network: A specific IP subnet segment under the destination IP mask

DIP Address:
Default: 192.168.1.254
DIP Mask:
Default: 255.255.255.0

VLAN Parameters:
VLAN ID Filter:
Range: Any / Specific
Any: Including all VLAN IDs
Specific: According to following VLAN ID and Tag Priority setting for ingress classification

VLAN ID:
Range: 1-4094
Tag Priority:
Range: Any / 0-7
Any: Including all Tag Priority values
$0-7$: The Tag Priority Value is one of number (0-7)
Action Parameters:
When the ingress frame meet above ACL ingress classification rule you can do the following actions:
Action:
Range: Permit / Deny
Permit:
Permit the met ACL ingress classification rule packets forwarding to other ports on the switch
Deny:
Discard the met ACL ingress classification rule packets

Rate Limiter:
Range: Disabled / 1-16
Disable: Disable Rate Limiter function
1-16: Apply the Rate Limiter Number setting for met ACL ingress rule packtes

Port Copy:

Range: Disabled / 1-24
Disable: Disable the Port Copy function

1-24: The packets will be copied to the selected port when they met ACL ingress rule.

3-8-4.Wizard

Function name:
Wizard
Function description:
The wizard function is provide 4 type of typical application for user easy to configure their application with ACL function.

Parameter description:

Please select an Action:
Set up Policy Rules / Set up Port Policies / Set up Typical Network Application Rules / Set up Source MAC and Source IP Binding

Next:
Click on <Next> to confirm current setting and go to next step automatically.

Cancel:
Cancel current setting back to top layer in the ACL wizard function
Back:
Click on <Back> to back to previous step
Wizard Again:
Click on <Wizard Again> the UI will back to top layer in the wizard function

Finish:
Click in <Finish> to finish the ACL Wizard setting, it will according the selection items to change the related parameters, then you have to click on <Apply> to confirm the all changed parameters setting.

Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch
Welcome to the ACL Configuration Wizard!
Please select an action:
O Set up Policy Rules
Set up the default policy rules for Client ports, Server ports, Network ports, and Guest ports.
Set up Port Policies
Group ports into several types according to different ACL policies.
Set up Typical Network Application Rules
Set up the specific ACL for different typical network application access control.
Set up Source MAC and Source IP Binding
Strictly control the network traffic by only allowing incoming frames that match the source MAC and source IP on specific ports.
To continue, click Next.

Next >
Fig. 3-125 Wizard

```
Welcome to the ACL Configuration Wizard!
Please select an action:
    Set up Policy Rules
    Set up the default policy rules for Client ports, Server ports, Network ports, and Guest ports
Set up Port Policies
    Group ports into several types according to different ACL policies.
Set up Typical Network Application Rules
Set up the specific ACL for different typical network application access control.
O Set up Source MAC and Source IP Binding
Strictly control the network traffic by only allowing incoming frames that match the source MAC and source IP on specific ports. To continue, click Next.
Next >
```

Fig. 3-126 Set up Policy Rules

Set up Policy Rules

Set up the default policy rules for Client ports, Server ports, Network ports and Guest ports.
Policy 2 for client ports : Limit the allowed rate of broadcast and multicast frames.
Policy 3 for server ports : Common server access only (DHCP, FTP, Mail, and WEB server). Policy 4 for network ports : Limit the allowed rate of TCP SYN flooding and ICMP flooding.
Policy 5 for guest ports : Internet access only.

To continue, click Next

Fig. 3-127 Set up Policy Rules

Signamax ${ }^{T M} 065-7841$ 24-Port 10/100/1000BaseT/TX Managed Switch

Finished!

The ACL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

Wizard Again Finish
Fig. 3-128 Set up Policy Rules

Access Control List Configuration						
Ingress Port	Frame Type	Action	Rate Limiter	Port Copy	Counters	
Policy 2	Any	Permit	1	Disabled		
Policy 2	Any	Permit	1	Disabled		$\begin{aligned} & \text { థ(1) } \\ & \text { e(4) } \end{aligned}$
Policy 3	ARP	Permit	Any	Disabled		$\begin{aligned} & \text { +® } \\ & \text { ©(4)® } \end{aligned}$
Policy 3	IPv4/FTP Control Port (In)	Permit	Any	Disabled		$\begin{aligned} & \text { †® } \\ & \text { (e)(4) } \end{aligned}$
Policy 3	IPw/FTP Control Port (Out)	Permit	Any	Disabled		$\begin{aligned} & \text { ¢® } \\ & \text { (e)(4)® } \end{aligned}$
Policy 3	IPv4/FTP Data Port (In)	Permit	Any	Disabled		$\begin{aligned} & \text { ® } \\ & \text { (e)(4) } \end{aligned}$
Policy 3	IPw//FTP Date Port (Out)	Permit	Any	Disabled		$\begin{aligned} & \text { థ(1) } \\ & \text { e(x) } \end{aligned}$
Policy 3	IPv4/POP3 (ln)	Permit	Any	Disabled		$\begin{aligned} & \text { +(1) } \\ & \text { (e) } \end{aligned}$
Policy 3	IPv4/POP3 (Out)	Permit	Any	Disabled		$\begin{aligned} & \text { థ(1) } \\ & \text { e(x) } \end{aligned}$

Fig. 3-129 Set up Policy Rules Finish

```
Welcome to the ACL Configuration Wizard!
Please select an action:
O Set up Policy Rules
    Set up the default policy rules for Client ports, Server ports, Network ports, and Guest ports.
\odot Set up Port Policies
    Group ports into several types according to different ACL policies.
Set up Typical Network Application Rules
    Set up the specific ACL for different typical network application access control.
Oet up Source MAC and Source IP Binding
    Strictly control the network traffic by only allowing incoming frames that match the source MAC and source IP on specific ports.
To continue, click Next.
Next >
```

Fig. 3-130 Set up Port Policies

Set up Port Policies
Group ports into several categories according to different ACL policies, for example, Client ports (work stations, laptops), Server ports (DHCP, Web, file server), Network ports (routers, switches), and Guest ports (laptops with Internet access only).

Fig. 3-131 Set up Port Policies
Finished!
The ACL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

Wizard Again Finish

Fig. 3-132 Set up Port Policies

Signamax ${ }^{T M}$ 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

ACL Ports Configuration

Port \#	Policy ID	Action	Rate Limiter ID	Port Copy	Counter
1	1 V	Permit \checkmark	Disabled \vee	Disabled \vee	5463
2	$2 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
3	$3 \vee$	Permit \vee	Disabled \vee	Disabled \vee	0
4	$4 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
5	$5 \vee$	Permit \vee	Disabled \vee	Disabled \vee	0
6	$6 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
7	7 v	Permit \vee	Disabled \vee	Disabled \vee	0
8	$8 \vee$	Permit \checkmark	Disabled \vee	Disabled \vee	0
9	1 v	Permit \vee	Disabled \vee	Disabled \vee	0
10	1 v	Permit \checkmark	Disabled \vee	Disabled \vee	0
11	1 v	Permit \vee	Disabled \vee	Disabled \vee	0
12	1 v	Permit \checkmark	Disabled \vee	Disabled \vee	0
13	1 v	Permit \vee	Disabled \vee	Disabled \vee	0
14	1 v	Permit \vee	Disabled \vee	Disabled \vee	0
15	1 v	Permit \vee	Disabled \vee	Disabled \vee	0

Fig. 3-133 Set up Port Policies Finish

```
Welcome to the ACL Configuration Wizard!
Please select an action:
Set up Policy Rules
Set up the default policy rules for Client ports, Server ports, Network ports, and Guest ports.
Set up Port Policies
Group ports into several types according to different ACL policies.
\(\odot\) Set up Typical Network Application Rules
Set up the specific ACL for different typical network application access control.
Set up Source MAC and Source IP Binding
Strictly control the network traffic by only allowing incoming frames that match the source MAC and source IP on specific ports. To continue, click Next.

Fig. 3-134 Set up Typical Network Application Rules

Signamax \({ }^{T M}\) 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch
```

Set up Typical Network Application Rules
Set up the specific ACL for different typical network application access control by selecting the network application type for your rule:
o Common Servers
\squareDHCP }\square\textrm{DNS}\square\textrm{FTP}\squareHTTP \squareIMAP \squareNFS \squarePOP3 \squareSAMBA \squareSMTP \squareTELNET \squareTFTP
o Instant Messaging
Google Talk }\square\mathrm{ MSN Messenger }\square\mathrm{ Yahoo Messenger

- User Definition

```

```

- Others
\square HTTPS \square ICMP \square Multicast IP Stream \square NetBIOS \square Ping Request \square Ping Reply \square SNMP \square SNMP Traps
Cancel < Back Next >

```

Fig. 3-135 Set up Typical Network Application Rules


Fig. 3-136 Set up Typical Network Application Rules

\section*{Finished!}

The ACL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

Wizard Again Finish
Fig. 3-137 Set up Typical Network Application Rules
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Access Control List Configuration} & Auto-refresh \(\square\) Refresh & Clear \\
\hline Ingress Port & Frame Type & Action & Rate Limiter & Port Copy & Counters & & & \\
\hline Any & IPv4/DHCP Client (ln) & Deny & Any & Disabled & & \[
\begin{gathered}
\text { ©®® } \\
0 \text { ©(x) }
\end{gathered}
\] & & \\
\hline Any & IPv4/DHCP Client (Out) & Deny & Any & Disabled & & \[
\begin{aligned}
& \text { థ®) } \\
& \text { e(x) }
\end{aligned}
\] & & \\
\hline Any & IPv4/Google Talk ( ln ) & Deny & Any & Disabled & & \[
\begin{aligned}
& \text { థ® } \\
& \text { e(x) }
\end{aligned}
\] & & \\
\hline Any & IPv4/Google Talk (Out) & Deny & Any & Disabled & & \[
\begin{aligned}
& \text { +(1) } \\
& \text { e(x) }
\end{aligned}
\] & & \\
\hline Any & EType & Deny & Any & Disabled & & \[
\begin{aligned}
& \text { థ® } \\
& \text { (e)(1) }
\end{aligned}
\] & & \\
\hline Any & IPv4/HTTPS (ln) & Deny & Any & Disabled & & \[
\begin{aligned}
& \text { థ(1) } \\
& \text { e(x) }
\end{aligned}
\] & & \\
\hline Any & IPv4/HTTPS (Out) & Deny & Any & Disabled & &  & & \\
\hline
\end{tabular}

Fig. 3-138 Set up Typical Network Application Rules Finish
Parameter description:
Common Server:
DHCP / DNS / FTP / HTTP / IMAP / NFS / POP3 / SAMBA / SMTP / TELNET / TFTP

Instant Messaging:
Google Talk / MSN Messenger / Yahoo Messenger
User Definition:
Ethernet Type / UDP Port / TCP Port
Others:
TCP Port / ICMP / Multicast IP Stream / NetBIOS / Ping Request / Ping Reply / SNMP / SNMP Traps

Ingress Port:
Any / Policy1-8 / Port1-24
Action:
```

Welcome to the ACL Configuration Wizard!
Please select an action:
Set up Policy Rules
Set up the default policy rules for Client ports, Server ports, Network ports, and Guest ports.
Set up Port Policies
Group ports into several types according to different ACL policies.
Set up Typical Network Application Rules
Set up the specific ACL for different typical network application access control
\odot)Set up Source MAC and Source IP Binding
Strictly control the network traffic by only allowing incoming frames that match the source MAC and source IP on specific ports.
To continue, click Next.
Next >

```

Fig. 3-139 Set up Source MAC and Source IP Binding

\section*{Set up Source MAC and Source IP Binding}

Strictly control the network traffic by only allowing incoming frames that match the source MAC and source IP on specific port.


Fig. 3-140 Set up Source MAC and Source IP Binding

Finished!
The ACL configuration wizard is finished, and the new configuration is ready for use.

Click Finish to get more information.
Click Wizard Again to start the wizard again.

Wizard Again
Finish

Fig. 3-141 Set up Source MAC and Source IP Binding


Fig. 3-142 Set up Source MAC and Source IP Binding Finish

Parameter description:
Port \#:
1-24
Binding Enabled:
Use the switch ACL function to support IP/MAC Binding function, the maximum is up to 128 entries.

Source MAC Address: xx-xx-xx-xx-xx-xx
For example: 00-40-c7-00-00-01
Source IP Address: xxx.xxx.xxx.xxx
For example: 192.168.1.100

\section*{3-9. IP MAC Binding}

The IP network layer uses a four-byte address. The Ethernet link layer uses a six-byte MAC address. Binding these two address types together allows the transmission of data between the layers. The primary purpose of IP-MAC binding is to restrict the access to a switch to a number of authorized users. Only the authorized client can access the Switch's port by checking the pair of IP-MAC Addresses and port number with the pre-configured database. If an unauthorized user tries to access an IP-MAC binding enabled port, the system will block the access by dropping its packet.

Function name:
IP MAC Binding Configuration
Function description:
The switch has client and server two classes of IP-MAC Binding table. The maximum number of IP-MAC binding client table is 512 entries. The maximum number of IP-MAC Binding server table is 64 entries. The creation of authorized users can be manually. The function is global, this means a user can enable or disable the function for all ports on the switch.

Parameters description:
State:
Disabled / Enabled
Time Interval:
Range: 10 / 20 / 30
Time interval is for ARP echo, the switch will according to server table entries to send ARP echo.
Server/Client:
The maximum number of IP-MAC binding client table is 512 entries. The maximum number of IP-MAC Binding server table is 64 entries.
MAC:
Six-byte MAC Address: xx-xx-xx-xx-xx-xx
For example: 00-40-c7-00-00-01
IP:
Four-byte IP Address: xxx.xxx.xxx.xxx
For example: 192.168.1.100
Port No:
Port no.: 1-24
VID:
VLAN ID: 1-4094
Add:
Input MAC, IP, Port and VID, then click on <Add> to create a new entry into the IP MAC Binding table

Signamax \({ }^{T M}\) 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch Delete:

Select one of entry from the table, then click on <Delete> to delete this entry.


Fig. 3-143

\section*{3-10. 802.1X Configuration}
802.1X port-based network access control provides a method to restrict users to access network resources via authenticating user's information. This restricts users from gaining access to the network resources through a 802.1Xenabled port without authentication. If a user wishes to touch the network through a port under 802.1X control, he (she) must firstly input his (her) account name for authentication and waits for gaining authorization before sending or receiving any packets from a 802.1X-enabled port.

Before the devices or end stations can access the network resources through the ports under 802.1X control, the devices or end stations connected to a controlled port send the authentication request to the authenticator, the authenticator pass the request to the authentication server to authenticate and verify, and the server tell the authenticator if the request get the grant of authorization for the ports.

According to IEEE802.1X, there are three components implemented. They are Authenticator, Supplicant and Authentication server shown in Fig. 3-53.

Supplicant:
It is an entity being authenticated by an authenticator. It is used to communicate with the Authenticator PAE (Port Access Entity) by exchanging the authentication message when the Authenticator PAE request to it.

Authenticator:
An entity facilitates the authentication of the supplicant entity. It controls the state of the port, authorized or unauthorized, according to the result of authentication message exchanged between it and a supplicant PAE.

The authenticator may request the supplicant to re-authenticate itself at a configured time period. Once start re-authenticating the supplicant, the controlled port keeps in the authorized state until re-authentication fails.

A port acting as an authenticator is thought to be two logical ports, a controlled port and an uncontrolled port. A controlled port can only pass the packets when the authenticator PAE is authorized, and otherwise, an uncontrolled port will unconditionally pass the packets with PAE group MAC address, which has the value of 01-80-c2-00-00-03 and will not be forwarded by MAC bridge, at any time.

Authentication server:
A device provides authentication service, through EAP, to an authenticator by using authentication credentials supplied by the supplicant to determine if the supplicant is authorized to access the network resource.

The overview of operation flow for the Fig. 3-53 is quite simple. When Supplicant PAE issues a request to Authenticator PAE, Authenticator and Supplicant exchanges authentication message. Then, Authenticator passes the request to RADIUS server to verify. Finally, RADIUS server replies if the request is granted or denied.

While in the authentication process, the message packets, encapsulated by Extensible Authentication Protocol over LAN (EAPOL), are exchanged between an authenticator PAE and a supplicant PAE. The Authenticator exchanges the message to authentication server using EAP encapsulation. Before successfully authenticating, the supplicant can only touch the authenticator to perform authentication message exchange or access the network from the uncontrolled port.


LAN
Fig. 3-53
In the Fig. 3-54, this is the typical configuration, a single supplicant, an authenticator and an authentication server. \(B\) and \(C\) is in the internal network, \(D\) is Authentication server running RADIUS, switch at the central location acts Authenticator connecting to PC A and A is a PC outside the controlled port, running Supplicant PAE. In this case, PC A wants to access the services on device B and C, first, it must exchange the authentication message with the authenticator on the port it connected via EAPOL packet. The authenticator transfers the supplicant's credentials to Authentication server for verification. If success, the authentication server will notice the authenticator the grant. PC A, then, is allowed to access B and \(C\) via the switch. If there are two switches directly connected together instead of single one, for the link connecting two switches, it may have to act two port roles at the end of the link: authenticator and supplicant, because the traffic is bi-directional.

Fig. 3-54
Authentication server


The Fig. 3-55 shows the procedure of 802.1X authentication. There are steps for the login based on 802.1X port access control management. The protocol used in the right side is EAPOL and the left side is EAP.
1. At the initial stage, the supplicant \(A\) is unauthenticated and a port on switch acting as an authenticator is in unauthorized state. So the access is blocked in this stage.
2. Initiating a session. Either authenticator or supplicant can initiate the message exchange. If supplicant initiates the process, it sends EAPOL-start packet to the authenticator PAE and authenticator will immediately respond EAP-Request/Identity packet.
3. The authenticator always periodically sends EAP-Request/Identity to the supplicant for requesting the identity it wants to be authenticated.
4. If the authenticator doesn't send EAP-Request/Identity, the supplicant will initiate EAPOL-Start the process by sending to the authenticator.
5. And next, the Supplicant replies an EAP-Response/Identity to the authenticator. The authenticator will embed the user ID into Radius-Access-Request command and send it to the authentication server for confirming its identity.
6. After receiving the Radius-Access-Request, the authentication server sends Radius-Access-Challenge to the supplicant for asking for inputting user password via the authenticator PAE.
7. The supplicant will convert user password into the credential information, perhaps, in MD5 format and replies an EAP-Response with this credential information as well as the specified authentication algorithm (MD5 or OTP) to Authentication server via the authenticator PAE. As per the value of the type field in message PDU, the authentication server knows which algorithm should be applied to authenticate the credential information, EAP-MD5 (Message Digest 5) or EAP-OTP (One Time Password) or other else algorithm.
8. If user ID and password is correct, the authentication server will send a Radius-Access-Accept to the authenticator. If not correct, the authentication server will send a Radius-Access-Reject.
9. When the authenticator PAE receives a Radius-Access-Accept, it will send an EAP-Success to the supplicant. At this time, the supplicant is authorized and the port connected to the supplicant and under 802.1X control is in the authorized state. The supplicant and other devices connected to this port can access the network. If the authenticator receives a Radius-Access-Reject, it will send an EAP-Failure to the supplicant. This means the supplicant is failed to authenticate. The port it connected is in the unauthorized state, the supplicant and the devices connected to this port won't be allowed to access the network.
10. When the supplicant issue an EAP-Logoff message to Authentication server, the port you are using is set to be unauthorized.


Access allowed

Fig. 3-55

Only MultiHost 802.1X is the type of authentication supported in the switch. In this mode, for the devices connected to this port, once a supplicant is authorized, the devices connected to this port can access the network resource through this port.
802.1X Port-based Network Access Control function supported by the switch is little bit complex, for it just support basic Multihost mode, which can distinguish the device's MAC address and its VID. The following table is the summary of the combination of the authentication status and the port status versus the status of port mode, set in 802.1X Port mode, port control state, set in 802.1X port setting. Here Entry Authorized means MAC entry is authorized.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Port Mode } & \multicolumn{1}{|c|}{ Port Control } & Authentication & \multicolumn{1}{|c|}{ Port Status } \\
\hline Disable & Don't Care & Don't Care & Port Uncontrolled \\
\hline Multihost & Auto & Successful & Port Authorized \\
\hline Multihost & Auto & Failure & Port Unauthorized \\
\hline Multihost & ForceUnauthorized & Don't Care & Port Unauthorized \\
\hline Multihost & ForceAuthorized & Don't Care & Port Authorized \\
\hline
\end{tabular}

Table 3-3

\section*{3-10-1.Server}

Function name:
802.1X Server Configuration

Function description:
This function is used to configure the global parameters for RADIUS authentication in 802.1X port security application.
Parameter description:
Authentication Server
Server IP Server:
Server IP address for authentication.
Default: 192.168.1.1
UDP Port:
Default port number is 1812.
Secret Key:
The secret key between authentication server and authenticator. It is a string with the length \(1-31\) characters. The character string may contain upper case, lower case and 0-9. It is character sense. It is not allowed for putting a blank between any two characters.
Default: Radius
Accounting Server
Server IP Server:
Server IP address for authentication.
Default: 192.168.1.1

\section*{UDP Port:}

Default port number is 1812.
Secret Key:
The secret key between authentication server and authenticator. It is a string with the length \(1-31\) characters. The character string may contain upper case, lower case and 0-9. It is character sense. It is not allowed for putting a blank between any two characters.

Default: Radius

Signamax \({ }^{T M} 065-7841\) 24-Port 10/100/1000BaseT/TX Managed Switch
\begin{tabular}{|l|l|}
\hline 802.1X Server Configuration \\
\hline \multicolumn{1}{|c|}{ Authentication Server } \\
\hline Server IP Address & 192.168 .1 .1 \\
\hline UDP Port & 1812 \\
\hline Secret Key & Radius \\
\hline & \\
\hline & Accounting Server \\
\hline Server IP Address & 192.168 .1 .1 \\
\hline UDP Port & 1813 \\
\hline Secret Key & Radius \\
\hline & \\
\hline Save \\
\hline
\end{tabular}

Fig. 3-144

\section*{3-10-2.Port Configuration}

\section*{Function name:}

\subsection*{802.1X Port Configuration}

Function description:
This function is used to configure the parameters for each port in 802.1X port security application. Refer to the following parameters description for details.
Parameter description:
Port:
It is the port number to be selected for configuring its associated 802.1X parameters which are Port control, reAuthMax, txPeriod, Quiet Period, reAuthEnabled, reAuthPeriod, max. Request, suppTimeout, serverTimeout and Controlled direction.

Mode:
Range: Disable / Normal / Advanced / Clientless
Disable:
Disable IEEE 802.1X for this port.
Normal:
All clients under this port will be authorized when one of the client do 802.1X authentication successfully.
Advanced:
Each clients under this port have to do 802.1X authentication by himself.

Clientless:
The clients don't need to install 802.1X client function, that means the client PC (for example WINDOW XP) does not need to enable 802.1X client function also can do 802.1X authentication. But the network maintainer need to configure the Radius server using each client's MAC address for Radius account ID and password.

Port Control:
This is used to set the operation mode of authorization. There are three type of operation mode supported, ForceUnauthorized, ForceAuthorized, Auto.
- ForceUnauthorized:

The controlled port is forced to hold in the unauthorized state.
- ForceAuthorized:

The controlled port is forced to hold in the authorized state.
- Auto:

The controlled port is set to be in authorized state or unauthorized

Default: Auto
reAuthMax(1-10):
The number of authentication attempt that is permitted before the port becomes unauthorized.

Default: 2
txPeriod(1-65535 s):
A time period to transmitted EAPOL PDU between the authenticator and the supplicant.
Default: 30
Quiet Period(0-65535 s):
A period of time during which we will not attempt to access the supplicant.
Deafult: 60 seconds
reAuthEnabled:
Choose whether regular authentication will take place in this port.
Default: ON
reAuthPeriod(1-65535 s):
A non-zero number seconds between the periodic re-authentication of the supplicant.
Default: 3600
max. Request(1-10):
The maximum of number times that the authenticator will retransmit an EAP Request to the supplicant before it times out the authentication session. The valid range: 1-10.
Default: 2 times
suppTimeout(1-65535 s):
A timeout condition in the exchange between the authenticator and the supplicant. The valid range: 1-65535.
Default: 30 seconds.
serverTimeout(1-65535 s):
A timeout condition in the exchange between the authenticator and the authentication server. The valid range: 1-65535.

Default: 30 seconds

\subsection*{802.1X Port Configuration}
\begin{tabular}{|c|c|c|c|c|}
\hline Port & \multicolumn{2}{|l|}{Port \(1 \checkmark\)} & & \\
\hline Mode & \multicolumn{2}{|l|}{Clientless \(\vee\)} & & \\
\hline Port Control & \multicolumn{2}{|l|}{Disabled} & \(\checkmark\) & \\
\hline reauthmax & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Normal Advanced Clientless उ}} & & (1-10) \\
\hline txPeriod & & & & (1-65535 sec) \\
\hline quietPeriod & \multicolumn{3}{|l|}{60} & (0-65535 sec) \\
\hline reAuthEnabled & \multicolumn{3}{|l|}{ON V} & \\
\hline reauthPeriod & \multicolumn{3}{|l|}{120} & (1-65535 sec) \\
\hline maxReq & \multicolumn{3}{|l|}{2} & (1-10) \\
\hline suppTimeout & \multicolumn{3}{|l|}{30} & \((1-255 \mathrm{sec})\) \\
\hline serverTimeout & \multicolumn{3}{|l|}{30} & \((1-255 \mathrm{sec})\) \\
\hline
\end{tabular}

\section*{Save}

Fig. 3-145

\section*{3-10-3.Status}

Function name:
802.1X Status

Function description:
Show the each port IEEE 802.1X authentication current operating mode and status.

Parameter description:
Port:
Port number: 1-24
Mode:
Show this port IEEE 802.1X operating mode: There are four modes Disable, Normal, Advance and Clientless

Status:
Show this port IEEE 802.1X security current status: Authorized or Unauthorized

Signamax \({ }^{\text {TM }} 065-7841\) 24-Port 10/100/1000BaseT/TX Managed Switch


Fig. 3-146

\section*{3-10-4. Statistics}

Function name:
802.1X Port Statistics Port1

Function description:
Show the IEEE 802.1X authentication related counters for manager monitoring authenticator status.

Parameter description:
Port:
Port Number: 1-24
Auto - refresh:
Refresh the authenticator counters in the web UI automatically

\section*{Refresh:}

Click on the <Refresh> to update the authenticator counters in the web UI

Clear:
Click on the <Clear> to clear all authenticator counters in the web UI


Fig. 3-147

\section*{3-11. Trunking Configuration}

The Port Trunking Configuration is used to configure the settings of Link Aggregation. You can bundle more than one port with the same speed, full duplex and the same MAC to be a single logical port, thus the logical port aggregates the bandwidth of these ports. This means you can apply your current Ethernet equipments to build the bandwidth aggregation. For example, if there are three Fast Ethernet ports aggregated in a logical port, then this logical port has bandwidth three times as high as a single Fast Ethernet port has.

The switch supports two kinds of port trunking methods:
LACP:
Ports using Link Aggregation Control Protocol (according to IEEE 802.3ad specification) as their trunking method can choose their unique LACP GroupID (1~8) to form a logic "trunked port". The benefit of using LACP is that a port makes an agreement with its peer port before it becomes a ready member of a "trunk group" (also called aggregator). LACP is safer than the other trunking method - static trunk.

The switch LACP does not support the followings:
- Link Aggregation across switches
- Aggregation with non-IEEE 802.3 MAC link
- Operating in half-duplex mode
- Aggregate the ports with different data rates

Static Trunk:
Ports using Static Trunk as their trunk method can choose their unique Static GroupID (also 1~8, this Static groupID can be the same with another LACP groupID) to form a logic "trunked port". The benefit of using Static Trunk method is that a port can immediately become a member of a trunk group without any handshaking with its peer port. This is also a disadvantage because the peer ports of your static trunk group may not know that they should be aggregate together to form a "logic trunked port". Using Static Trunk on both end of a link is strongly recommended. Please also note that low speed links will stay in "not ready" state when using static trunk to aggregate with high speed links.

As to system restrictions about the port aggregation function on the switch, In the management point of view, the switch supports maximum 8 trunk groups for LACP and additional 8 trunk groups for Static Trunk. But in the system capability view, only 8 "real trunked" groups are supported. An LACP trunk group with more than one ready member-ports is a "real trunked" group. An LACP trunk group with only one or less than one ready member-ports is not a "real trunked" group. Any Static trunk group is a "real trunked" group.

\section*{Signamax \({ }^{T M}\) 065-7841 24-Port 10/100/1000BaseT/TX Manaqed Switch}

Per Trunking Group supports a maximum of 12 ready member-ports. Please note that some decisions will automatically be made by the system while you are configuring your trunking ports. Some configuration examples are listed below:
a) 12 ports have already used Static Trunk Group ID 1, the 13th port willing to use the same Static Trunk Group ID will be automatically set to use the "None" trunking method and its Group ID will turn to 0 . This means the port won't aggregate with other ports.
b) 14 ports all use LACP Trunk Group ID 1 at most 12 ports can aggregate together and transit into the ready state.
c) A port using the "None" trunking method or Group ID 0 will be automatically set to use the "None" trunking method with Group ID 0.

\section*{3-11-1.Port}

\section*{Function name:}

Trunk Port Setting/Status
Function description:
Port setting/status is used to configure the trunk property of each and every port in the switch system.
Parameter description:
Port:
Port Number: 1-24
Method:
This determines the method a port uses to aggregate with other ports.
None:
A port does not want to aggregate with any other port should choose this default setting.

LACP:
A port use LACP as its trunk method to get aggregated with other ports also using LACP.

Static:
A port use Static Trunk as its trunk method to get aggregated with other ports also using Static Trunk.

Group:
Ports choosing the same trunking method other than "None" must be assigned a unique Group number (i.e. Group ID, valid value is from 1 to 8) in order to declare that they wish to aggregate with each other.

\section*{Active LACP:}

This field is only referenced when a port's trunking method is LACP.
Active:
An Active LACP port begins to send LACPDU to its link partner right after the LACP protocol entity started to take control of this port.
Passive:
A Passive LACP port will not actively send LACPDU out before it receives an LACPDU from its link partner.

Aggtr:
Aggtr is an abbreviation of "aggregator". Every port is also an aggregator, and its own aggregator ID is the same as its own Port No. We can regard an aggregator as a representative of a trunking group. Ports with same Group ID and using same trunking method will have the opportunity to aggregate to a particular aggregator port. This aggregator port is usually the port with the smallest Port No. within the trunking group.

Status:
This field represents the trunking status of a port which uses a trunking method other than "None". It also represents the management link status of a port which uses the "None" trunking method. "---" means "not ready"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Trunk Port Setting/Status} \\
\hline \multicolumn{4}{|c|}{Trunk Port Setting} & \multicolumn{2}{|l|}{Trunk Port Status} \\
\hline Port & Method & Group & Active LACP & Aggtr & Status \\
\hline 1 & None \(\vee\) & 0 V & Active \(\vee\) & 1 & Ready \\
\hline 2 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 2 & --- \\
\hline 3 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 3 & --- \\
\hline 4 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 4 & --- \\
\hline 5 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 5 & --- \\
\hline 6 & None v & \(0 \vee\) & Active \(\vee\) & 6 & --- \\
\hline 7 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 7 & --- \\
\hline 8 & None \(\vee\) & 0 - & Active \(\vee\) & 8 & --- \\
\hline 9 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 9 & --- \\
\hline 10 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 10 & --- \\
\hline 11 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 11 & --- \\
\hline 12 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 12 & --- \\
\hline 13 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 13 & --- \\
\hline 14 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 14 & --- \\
\hline 15 & None \(\vee\) & \(0 \vee\) & Active \(\vee\) & 15 & --- \\
\hline
\end{tabular}

Fig.3-148

\section*{3-11-2 Aggregator View}

Function name:
Aggregator View
Function description:
To display the current port trunking information from the aggregator point of view.
Parameter description:
Aggregator:
It shows the aggregator ID (from 1 to 24) of every port. In fact, every port is also an aggregator, and its own aggregator ID is the same as its own Port No..

Method:
Show the method a port uses to aggregate with other ports.
Member Ports:
Show all member ports of an aggregator (port).
Ready Ports:
Show only the ready member ports within an aggregator (port).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Aggregator View} \\
\hline Aggregator & Method & Member Ports & Ready Ports \\
\hline 1 & None & 1 & 1 \\
\hline 2 & None & 2 & \\
\hline 3 & None & 3 & \\
\hline 4 & None & 4 & \\
\hline 5 & None & 5 & \\
\hline 6 & None & 6 & \\
\hline 7 & None & 7 & \\
\hline 8 & None & 8 & \\
\hline 9 & None & 9 & \\
\hline 10 & None & 10 & \\
\hline 11 & None & 11 & \\
\hline 12 & None & 12 & \\
\hline 13 & None & 13 & \\
\hline 14 & None & 14 & \\
\hline 15 & None & 15 & \\
\hline 16 & None & 16 & \\
\hline
\end{tabular}

Fig.3-149

\section*{3-11-3 ACP System Priority}

Function name:
LACP System Priority
Function description:
It is used to set the priority part of the LACP system ID. LACP will only aggregate together the ports whose peer link partners are all on a single system. Each system supports LACP will be assigned a globally unique System Identifier for this purpose. A system ID is a 64-bit field comprising a 48 -bit MAC Address and 16 -bit priority value. The System Priority can be set by the user. Its range is from 1 to 65535 . Default: 32768

\section*{Parameter description:}

System Priority:
Show the System Priority part of a system ID.(1-65535)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ LACP System Priority } \\
System Priority & 32768 \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{|l|l|}
\hline & Apply \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

Fig. 3-150

\section*{3-12 STP Configuration}

The Spanning Tree Protocol (STP) is a standardized method (IEEE 802.1D) for avoiding loops in switched networks. When STP is enabled, ensure that only one path is active between any two nodes on the network at a time. User can enable Spanning Tree Protocol on switch's web management and then set up other advanced items. We recommend that you enable STP on all switches to ensure a single active path on the network.

\section*{3-12-1. Status}

\section*{Function name:}

STP Status
Function description:
In the Spanning Tree Status, user can read 12 parameters to know STP current status. The 12 parameters' description is listed in the following table.

\section*{Parameter description:}

STP State:
Show the current STP Enabled / Disabled status. Default is "Disabled".
Bridge ID:
Show switch's bridge ID which stands for the MAC address of this switch.
Bridge Priority:
Show this switch's current bridge priority setting. Default is 32768 .
Designated Root:
Show root bridge ID of this network segment. If this switch is a root bridge, the "Designated Root" will show this switch's bridge ID.
Designated Priority:
Show the current root bridge priority.
Root Port:
Show port number connected to root bridge with the lowest path cost.

\section*{Root Path Cost:}

Show the path cost between the root port and the designated port of the root bridge.
Current Max. Age:
Show the current root bridge maximum age time. Maximum age time is used to monitor if STP topology needs to change. When a bridge does not receive a hello message from root bridge until the maximum age time is counted down to 0 , the bridge will treat the root bridge malfunctioned and issue a Topology Change Notification (TCN) BPDU to all other bridges.

All bridges in the LAN will re-learn and determine which the root bridge is. Maximum Age time is assigned by root bridge in unit of seconds. Default is 20 seconds.

\section*{Current Forward Delay:}

Show the current root bridge forward delay time. The value of Forward Delay time is set by root. The Forward Delay time is defined as the time spent from Listening state moved to Learning state or from Learning state moved to Forwarding state of a port in bridge.
Hello Time:
Show the current hello time of the root bridge. Hello time is a time interval specified by root bridge, used to request all other bridges periodically sending hello message every "hello time" seconds to the bridge attached to its designated port.

\section*{STP Topology Change Count:}

STP Topology Change Count expresses the time spent in unit of seconds since the beginning of the Spanning Tree Topology Change to the end of the STP convergence. Once the STP change is converged, the Topology Change count will be reset to 0 . The figures showing in the screen may not be the exact time it spent but very close to, because the time is eclipsing.

\section*{Time Since Last Topology Change:}

Time Since Last Topology Change is the accumulated time in unit of seconds the STP has been since the last STP Topology Change was made. When Topology Change is initiated again, this counter will be reset to 0 . And it will also count again once STP topology Change is completed.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ STP Status } \\
\hline STP State & \\
\hline Bridge ID & \\
\hline Bridge Priority & Disabled \\
\hline Designated Root & \(00: 40: C 7: 01: 02: 33\) \\
\hline Designated Priority & 32768 \\
\hline Root Port & \(00: 40: C 7: 01: 02: 33\) \\
\hline Root Path Cost & 32768 \\
\hline Current Max. Age(sec) & 0 \\
\hline Current Forward Delay(sec) & 0 \\
\hline Hello Time(sec) & 20 \\
\hline STP Topology Change Count & 15 \\
\hline Time Since Last Topology Change(sec) & 2 \\
\hline
\end{tabular}

Fig. 3-151

\section*{3-12-2. Configuration}

The STP, Spanning Tree Protocol, actually includes RSTP. In the Spanning Tree Configuration, there are six parameters open for the user to configure as user's idea. Each parameter description is listed below.

\section*{Function name:}

STP Configuration

\section*{Function description:}

User can set the following Spanning Tree parameters to control STP function enable/disable, select mode RSTP/STP and affect STP state machine behavior to send BPDU in this switch. The default setting of Spanning Tree Protocol is "Disable".

\section*{Parameter description:}

Spanning Tree Protocol:
Set 802.1W Rapid STP function Enable / Disable. Default is "Disable"

\section*{Bridge Priority:}

The lower the bridge priority is, the higher priority it has. Usually, the bridge with the highest bridge priority is the root. If you want to have the 065-7841 as root bridge, you can set this value lower than that of bridge in the LAN. The valid value is \(0 \sim 61440\). The default is 32768 .
Hello Time:
Hello Time is used to determine the periodic time to send normal BPDU from designated ports among bridges. It decides how long a bridge should send this message to other bridge to tell I am alive. When the 065-7841 is the root bridge of the LAN, for example, all other bridges will use the hello time assigned by this switch to communicate with each other. The valid value is \(1 \sim 10\) in unit of second.

Default is 2 seconds.

\section*{Max. Age:}

When the 065-7841 is the root bridge, the whole LAN will apply this figure set by this switch as their maximum age time. When a bridge received a BPDU originated from the root bridge and if the message age conveyed in the BPDU exceeds the Max. Age of the root bridge, the bridge will treat the root bridge malfunctioned and issue a Topology Change Notification (TCN) BPDU to all other bridges. All bridges in the LAN will re-calculate and determine who the root bridge is. The valid value of Max. Age is \(6 \sim 40\) seconds. Default is 20 seconds.

Forward Delay:
You can set the root bridge forward delay time. This figure is set by root bridge only. The forward delay time is defined as the time spent from Listening state moved to Learning state and also from Learning state moved to Forwarding state of a port in bridge. The forward delay time contains two states, Listening state to Learning state and Learning state to Forwarding state. It assumes that forward delay time is 15 seconds, then total forward delay time will be 30 seconds. This has much to do with the STP convergent time which will be more than 30 seconds because some other factors.

The valid value is \(4 \sim 30\) seconds, default is 15 seconds.
Force Version:
Two options are offered for the user's choosing STP algorithm. One is RSTP and the other is STP. If STP is chosen, RSTP will run as a legacy STP. The switch supports RSTP (802.1w) which is backward compatible with STP (802.1d).


Note: \(2^{*}\) (Forward Delay -1) >= Max Age Max Age \(>=2^{*}(\) Hello Time +1\()\)

\section*{Apply}

Note: You will lose connection with this device for a while if you enable STP.

Fig. 3-152

\section*{3-12-3. STP Port Configuration}

\section*{Function name:}

STP Port Setting
Function description:
In the STP Port Setting, one item selection and five parameters settings are offered for user's setup. User can disable and enable each port by selecting each Port Status item. User also can set "Path Cost" and "Priority" of each port by filling in the desired value and set "Admin Edge Port" and "Admin Point To Point" by selecting the desired item.

Parameter description:
Port Status:
It displays the current state of a port. We cannot manually set it because it displays the status only. There are three possible states. ( according to 802.1w specification)
- DISCARDING state indicates that this port can neither forward packets nor contribute learning knowledge.
Notice: Three other states (Disable state, BLOCKING state and LISTENING state) defined in the 802.1d specification are now all represented as DISCARDING state.
- LEARNING state indicates this port can now contribute its learning knowledge but cannot forward packets still.
- FORWARDING state indicates this port can both contribute its learning knowledge and forward packets normally.

\section*{Path Cost Status:}

It is the contribution value of the path through this port to Root Bridge. STP algorithm determines a best path to Root Bridge by calculating the sum of path cost contributed by all ports on this path. A port with a smaller path cost value would become the Root Port more possibly.

Configured Path Cost:
The range is \(0-200,000,000\). In the switch, if path cost is set to be zero, the STP will get the recommended value resulted from auto-negotiation of the link accordingly and display this value in the field of Path Cost Status. Otherwise, it may show the value that the administrator set up in Configured Path Cost and Path Cost Status.
802.1w RSTP recommended value: (Valid range: 1 - 200,000,000)
\[
\begin{aligned}
& 10 \mathrm{Mbps}: \\
& 100 \mathrm{Mbps}: 2000,000 \\
& 1 \mathrm{Gbps}: 20,000
\end{aligned}
\]

Default: 0

Priority:
Priority here means Port Priority. Port Priority and Port Number are mixed to form the Port ID. Port IDs are often compared in order to determine which port of a bridge would become the Root Port. The range is \(0-240\).

Default is 128 .

\section*{Admin Edge Port:}

If user selects "Yes", this port will be an edge port. An Edge Port is a port connected to a device that knows nothing about STP or RSTP. Usually, the connected device is an end station. Edge Ports will immediately transit to forwarding state and skip the listening and learning state because the edge ports cannot create bridging loops in the network. This will expedite the convergence. When the link on the edge port toggles, the STP topology keeps unchanged. Unlike the designate port or root port though, an edge port will transit to a normal spanning-tree port immediately if it receives a BPDU.

Default: No

\section*{Admin Point To Point:}

We say a port is a point-to-point link, from RSTP's view, if it is in fullduplex mode but is shared link if it is in half-duplex mode. RSTP fast convergence can only happen on point-to-point links and on edge ports. This can expedite the convergence because this will have the port fast transited to forwarding state.

There are three parameters, Auto, True and False, used to configure the type of the point-to-point link. If configure this parameter to be Auto, it means RSTP will use the duplex mode resulted from the auto-negotiation. In today's switched networks, most links are running in full-duplex mode. For sure, the result may be half-duplex, in this case, the port will not fast transit to Forwarding state. If it is set as True, the port is treated as point-to-point link by RSTP and unconditionally transited to Forwarding state. If it is set as False, fast transition to Forwarding state will not happen on this port.

Default: Auto

\section*{M Check:}

Migration Check. It forces the port sending out an RSTP BPDU instead of a legacy STP BPDU at the next transmission. The only benefit of this operation is to make the port quickly get back to act as an RSTP port. Click <M Check> button to send a RSTP BPDU from the port you specified.

\section*{STP Port Configuration}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Port \({ }^{\text {No }}\) & Port Status & Path Cost Status & Configured Path Cost & Priority & Admin Port Type & Admin Point To Point \\
\hline 1 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 2 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 3 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 4 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 5 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 6 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 7 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 8 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 9 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 10 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 11 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 12 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 13 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 14 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 15 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 16 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 17 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 18 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 19 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 20 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 21 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline 22 & FORWARDING & 2000000 & 0 & 128 & Normal & Auto \\
\hline
\end{tabular}

Fig. 3-153

\section*{3-13 MSTP}

The implementation of MSTP is according to IEEE 802.1Q 2005 Clause 13 - Multiple Spanning Tree Protocol. MSTP allows frames assigned to different VLANs to follow separate paths, each based on an independent Multiple Spanning Tree Instance (MSTI), within Multiple Spanning Tree (MST) Regions composed of LANs and or MST Bridges. Proper configuration of MSTP in an 802.1Q VLAN environment can ensure a loop-free data path for a group of vlans within an MSTI. Redundant path and load balancing in vlan environment is also achieved via this feature.A spanning tree instance called CIST(Common and Internal Spanning Tree) always exists . Up to 64 more spanning tree instances (MSTIs) can be provisioned.

\section*{3-13-1 Status}

Function name:
MSTP State
Function description:
To enable or disable MSTP. And to select a version of Spanning Tree protocol which MSTP should operate on.

Parameter description:
Multiple Spanning Tree Protocol:
Disabled / Enabled
Force Version:
STP / RSTP / MSTP


Fig. 3-154

\section*{3-13-2 Region Config}

Function name:
MSTP Region Config
Function description:
To configure the basic identification of a MSTP bridge. Bridges participating in a common MST region must have the same Region Name and Revision Level.

Parameter description:
Region Name:
0-32 characters.(A variable length text string encoded within a fixed field of 32 octets, conforming to RFC 2271's definition of SnmpAdminString.)

Revision Level:
0-65535

\section*{MSTP Region Config}

\section*{Region Name ( O~32 characters) \\ mstpRegion 1}

Revision Level (0-65535)
0

\section*{Apply}

Fig. 3-155

\section*{3-13-3 Instance View}
(Fig. 3-156)
Function name:
MSTP Instance Config
Function description:
Providing an MST instance table which include information(vlan membership of a MSTI ) of all spanning instances provisioned in the particular MST region which the bridge belongs to. Through this table, additional MSTP configuration data can be applied and MSTP status can be retrieved.
Parameter description:
Instance ID:
Every spanning tree instance need to have a unique instance ID within \(0 \sim 4095\). Instance 0 (CIST) always exists and can not be deleted. Additional spanning instances (MSTIs) can be added or deleted. At least one vlan must be provisioned for an MSTI to declare the need for the MSTI to be existent.

Corresponding Vlans:
0-4095.
Multiple vlans can belong to an MSTI. All vlans that are not provisioned through this will be automatically assigned to Instance 0(CIST).

Edit MSTI / Vlan: Fig. 3-157
To add an MSTI and provide its vlan members or modify vlan members for a specific MSTI.

Del MSTI:
To delete an MSTI.
Del All MSTI:
Deleting all provisioned MSTIs at a time.
Instance Configuration: Fig. 3-158
To provision spanning tree performance parameters per instance.
Port Config: Fig. 3-159
To provision spanning tree performance parameters per instance per port.
Instance Status: Fig. 3-160
To show the status report of a particular spanning tree instance.
Port Status: Fig. 3-161

Signamax \({ }^{T M}\) 065-7841 24-Port 10/100/1000BaseT/TX Manaqed Switch
To show the status report of all ports regarding a specific spanning tree instance.


Fig. 3-156
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{MSTP Create MSTI / Add Vlan Mapping} \\
\hline \[
\begin{gathered}
\text { Instance ID } \\
(1-4095) \\
\hline
\end{gathered}
\] & \\
\hline Vlan Mapping (VID STRING) & \\
\hline VID STRING Example & 2.5-7.100-200.301.303.1000-1500 (Valid VID Range: 1 -4094) \\
\hline & Apply \\
\hline
\end{tabular}

Fig. 3-157 Edit MSTI / Vlan
Parameter description:
Vlan Mapping:
VID STRING
VID STRING Example:
2.5-7.100-200.301.303.1000-1500 (Valid VID Range:1-4094)

\section*{Instance Configuration ( \(\mathrm{ID}=0\) )}


Note: 2* (Forward Delay -1) >= Мах Age
Max Age: available from 6 to 40 . Recommended value is 20 Forward Delay(sec): available from 4 to 30 . Recommended value is 15 Max Hops: available from 6 to 40 . Recommended value is 20

Apply
Fig. 3-158 Instance Config

\section*{Parameter description:}

Priority: The priority parameter used in the CIST(Common and Internal Spanning Tree) connection.

0 / 4096 / 8192 / 12288 / 16384 / 20480 / 24576 / 28672 / 32768 / 36864
/ 40960 / 45056 / 49152 / 53248 / 57344 / 61440
MAX. Age:
\(6-40 \mathrm{sec}\). The same definition as in the RSTP protocol.
Forward Delay:
\(4-30 \mathrm{sec}\). The same definition as in the RSTP protocol.
MAX. Hops:
6-40sec. It's a new parameter for the multiple spanning tree protocol. It is used in the internal spanning tree instances. "CIST Remaining Hops" or "MSTI Remaining Hops" in the Spanning tree protocol message would decreased by one when the message is propagated to the neighboring bridge. If the Remaining Hops in a message is zero, the message (BPDU) would be regarded as invalid. Max Hops is used to specify the initial value of the Remaining Hops for Regional Root Bridge (Either CIST Regional Root or MSTI Regional Root)

Signamax \({ }^{T M}\) 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch

\section*{Port Config of Instance 0}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Port Config} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Migration \\
Check
\end{tabular} \\
\hline Mcheck \\
\hline
\end{tabular}} \\
\hline Port & Path Cost & Priority & Hello Time & Admin Edge & Admin P2P & Restricted Role & Restricted TCN & \\
\hline 1 & 0 & \(128 \vee\) & \(2 \vee\) & Yes \(\checkmark\) & Auto \(\vee\) & No V & No \(v\) & --- \(\vee\) \\
\hline 2 & 0 & \(128 \vee\) & 2 V & Yes \(\checkmark\) & Auto \(\vee\) & No \(v\) & No \(\vee\) & --- V \\
\hline 3 & 0 & \(128 \vee\) & \(2 \vee\) & Yes \(\checkmark\) & Auto \(\vee\) & No \(v\) & No \(\vee\) & --- \(\quad \vee\) \\
\hline 4 & 0 & \(128 \vee\) & 2 V & Yes \(\checkmark\) & Auto \(\vee\) & No \(v\) & No \(v\) & --- v \\
\hline 5 & 0 & \(128 \vee\) & \(2 \vee\) & Yes \(\checkmark\) & Auto \(\vee\) & No \(v\) & No \(\vee\) & \(-\vee\) \\
\hline 6 & 0 & \(128 \vee\) & 2 V & Yes \(\checkmark\) & Auto \(\vee\) & No \(v\) & No \(\vee\) & --- V \\
\hline 7 & 0 & \(128 \vee\) & 2 V & Yes \(\checkmark\) & Auto \(\checkmark\) & No \(v\) & No v & --- v \\
\hline 8 & 0 & \(128 \vee\) & \(2 \vee\) & Yes \(\checkmark\) & Auto \(\vee\) & No \(v\) & No \(\vee\) & \(\checkmark\) \\
\hline 9 & 0 & \(128 \vee\) & 2 V & Yes \(\checkmark\) & Auto \(V\) & No \(v\) & No \(\vee\) & --- V \\
\hline 10 & 0 & \(128 \vee\) & \(2 \vee\) & Yes \(\checkmark\) & Auto \(\checkmark\) & No \(v\) & No v & --- V \\
\hline 11 & 0 & \(128 \vee\) & \(2 \vee\) & Yes \(\checkmark\) & Auto \(\vee\) & No \(v\) & No \(\vee\) & - V \\
\hline 12 & 0 & \(128 \vee\) & \(2 \vee\) & Yes \(\vee\) & Auto \(\vee\) & No v & No \(\vee\) & --- \(\vee\) \\
\hline
\end{tabular}

Fig. 3-159 Port Config
Parameter description:
Port:
1-24
Path Cost:
1 -200,000,000
The same definition as in the RSTP specification. But in MSTP, this parameter can be respectively applied to ports of CIST and ports of any MSTI.

Priority:
0 / 16 / 32 / 48 / 64 / \(80 / 96 / 112 / 128 / 144 / 160 / 176 / 192 / 208 / 224\) / 240

The same definition as in the RSTP specification. But in MSTP, this parameter can be respectively applied to ports of CIST and ports of any MSTI.

Hello Time:
\(1 / 2\)
In contrast with RSTP, Hello Time in MSTP is a per port setting for the CIST.

Admin Edge:

The same definition as in the RSTP specification for the CIST ports.
Admin P2P:
Auto / True / False
The same definition as in the RSTP specification for the CIST ports.
Restricted Role:
Yes / No
If "Yes" causes the Port not to be selected as Root Port for the CIST or any MSTI, even it has the best spanning tree priority vector. Such a Port will be selected as an Alternate Port after the Root Port has been selected. This parameter is "No" by default. If set, it can cause lack of spanning tree connectivity. It is set by a network administrator to prevent bridges external to a core region of the network influencing the spanning tree active topology, possibly because those bridges are not under the full control of the administrator.

Restricted TCN:
Yes / No
If "Yes" causes the Port not to propagate received topology change notifications and topology changes to other Ports. This parameter is "No" by default. If set it can cause temporary loss of connectivity after changes in a spanning trees active topology as a result of persistent incorrectly learned station location information. It is set by a network administrator to prevent bridges external to a core region of the network, causing address flushing in that region, possibly because those bridges are not under the full control of the administrator. or the status of MAC operation for the attached LANs transitions frequently.

Mcheck:
The same definition as in the RSTP specification for the CIST ports.
\begin{tabular}{|c|c|}
\hline MSTP State & Enabled \\
\hline Force Version & RSTP \\
\hline Bridge Max Age & 20 \\
\hline Bridge Forward Delay & 15 \\
\hline Bridge Max Hops & 20 \\
\hline Instance Priority & 32768 \\
\hline Bridge Mac Address & 00:40:c7:01:02:33 \\
\hline CIST ROOT PRIORITY & 32768 \\
\hline CIST ROOT MAC & 00:40:c7:01:02:33 \\
\hline CIST EXTERNAL ROOT PATH COST & 0 \\
\hline CIST ROOT PORT ID & 0 \\
\hline CIST REGIONAL ROOT PRIORITY & 32768 \\
\hline CIST REGIONAL ROOT MAC & 00:40:c7:01:02:33 \\
\hline CIST INTERNAL ROOT PATH COST & 0 \\
\hline CIST CURRENT MAX AGE & 20 \\
\hline CIST CURRENT FORWARD DELAY & 15 \\
\hline TIME SINCE LAST TOPOLOGY CHANGE(SECs) & 1095 \\
\hline TOPOLOGY CHANGE COUNT(SECs) & 0 \\
\hline Refresh & \\
\hline
\end{tabular}

Fig. 3-160 Instance Status
Parameter description:
MSTP State:
MSTP protocol is Enable or Disable.
Force Version:
It shows the current spanning tree protocol version configured.
Bridge Max Age:
It shows the Max Age setting of the bridge itself.
Bridge Forward Delay:
It shows the Forward Delay setting of the bridge itself.
Bridge Max Hops:
It shows the Max Hops setting of the bridge itself.
Instance Priority:
Spanning tree priority value for a specific tree instance(CIST or MSTI)
Bridge Mac Address:
The Mac Address of the bridge itself.

\section*{CIST ROOT PRIORITY:}

Spanning tree priority value of the CIST root bridge
CIST ROOT MAC:

\section*{CIST EXTERNAL ROOT PATH COST:}

Root path cost value from the point of view of the bridge's MST region.

\section*{CIST ROOT PORT ID:}

The port ID of the bridge's root port. In MSTP, peer port of a root port may reside in defferent MST region or in the same MST region. The first case indicates that the root port's owner is the CIST regional root bridge.

CIST REGIONAL ROOT PRIORITY:
Spanning tree priority value of the CIST regional root bridge.Note that CIST Regional Root bridge is different from CIST Root bridge.One exception is that when a bridge belonging to an MST region happens to be the root bridge of the CST(Common Spanning Tree). An MST Region in the CST can be regarded as a common RSTP bridge.The IST(Internal Spanning Tree) and MSTIs are transparent to bridges outside this region.

\section*{CIST REGIONAL ROOT MAC:}

Mac Address of the CIST regional root bridge.

\section*{CIST INTERNAL ROOT PATH COST:}

Root path cost value from the point of view of the bridges inside the IST.

\section*{CIST CURRENT MAX AGE:}

Max Age of the CIST Root bridge.

\section*{CIST CURRENT FORWARD DELAY:}

Forward Delay of the CIST Root bridge.

\section*{TIME SINCE LAST TOPOLOGY CHANGE(SECs):}

Time Since Last Topology Change is the elapsed time in unit of seconds for a bunch of "Topology Change and(or) Topology Change Notification receiving" to occur. When new series of Topology Changes occur again, this counter will be reset to 0 .

\section*{TOPOLOGY CHANGE COUNT(SECs):}

The per spanning tree instanceTopology Change Count expresses the time spent in unit of seconds since the beginning of the Spanning Tree Topology Change to the end of the STP convergence. Once there is no topology change occurring and no more topology change notification received, the Topology Change count will be reset to 0 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Refresh} \\
\hline Port No & Status & Role & Path Cost & Priority & Hello & Oper. Edge & Oper. P2P & Restricted Role & Restricted Tcn \\
\hline 1 & FORWARDING & DSGN & 20000 & 128 & 2/2 & V & V & & \\
\hline 2 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 3 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 4 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 5 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & v & & & \\
\hline 6 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 7 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 8 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 9 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 10 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline 11 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & \(v\) & & & \\
\hline 12 & DISCARDING & dsbl & 2000000 & 128 & 2/2 & V & & & \\
\hline
\end{tabular}

Fig. 3-161 Port Status
Parameter description:
Port No:
1-24
Status:
The forwarding status.Same definition as of the RSTP specification Possible values are "FORWARDING" , "LEARNING" , "DISCARDING"

\section*{Status:}

The role that a port plays in the spanning tree topology. Possible values are "dsbl"(disable port) , "alt"(alternate port) , "bkup"(backup port) , "ROOT"(root port) , "DSGN"(designated port) , "MSTR"(master port). The last 3 are possible port roles for a port to transit to FORWARDING state

\section*{Path Cost:}

Display currently resolved port path cost value for each port in a particular spanning tree instance.

Priority:
Display port priority value for each port in a particular spanning tree instance.

Hello:
per port Hello Time display. It takes the following form:
Current Hello Time/Hello Time Setting
Oper. Edge:
Whether or not a port is an Edge Port in reality.
Oper. P2P:
Whether or not a port is a Point-to-Point Port in reality.
Restricted Role:

Signamax \({ }^{T M} 065-7841\) 24-Port 10/100/1000BaseT/TX Managed Switch Same as mentioned in "Port Config"

Restricted Tcn:
Same as mentioned in "Port Config"

\section*{3-14. Mirror}

Function name:
Mirror Configuration
Function description:
Mirror Configuration is to monitor the traffic of the network. For example, we assume that Port A and Port B are Monitoring Port and Monitored Port respectively, thus, the traffic received by Port B will be copied to Port A for monitoring.

Note:
When configure the mirror function, you should avoid setting a port to be a sniffer port and aggregated port at the same time. It will cause something wrong.
Parameter description:
Port to mirror to:
Range: Disabled / Port 1-24
Set the monitoring port.
Port \#:
Range: 1-24
Select the monitored ports.
Source Enable:
The source enable means the monitored port ingress traffic will be copied to monitoring port.

Destination Enable:
The destination enable means the monitored port egress traffic will be copied to monitoring port.

Signamax \({ }^{T M}\) 065-7841 24-Port 10/100/1000BaseT/TX Managed Switch Mirror Configuration
\begin{tabular}{|l|l|}
\hline Port to mirror to & Disabled \(\vee\) \\
\hline
\end{tabular}
\begin{tabular}{|cccc|}
\hline Port \# & Source Enable & Destination Enable \\
\hline 1 & \(\square\) & \(\square\) \\
2 & \(\square\) & \(\square\) \\
3 & \(\square\) & \(\square\) \\
4 & \(\square\) & \(\square\) \\
5 & \(\square\) & \(\square\) \\
6 & \(\square\) & \(\square\) \\
7 & \(\square\) & \(\square\) \\
8 & \(\square\) & \(\square\) \\
9 & \(\square\) & \(\square\) \\
10 & \(\square\) & \(\square\) \\
11 & \(\square\) & \(\square\) \\
12 & \(\square\) & \(\square\) \\
13 & \(\square\) & \(\square\) \\
14 & \(\square\) & \(\square\) & \(\square\) \\
15 & \(\square\) & \(\square\) & \\
\hline
\end{tabular}

Fig. 3-162

\section*{3-15. IGMP Snooping}

The function, IGMP Snooping, is used to establish the multicast groups to forward the multicast packet to the member ports, and, in nature, avoids wasting the bandwidth while IP multicast packets are running over the network. This is because a switch that does not support IGMP or IGMP Snooping can not tell the multicast packet from the broadcast packet, so it can only treat them all as the broadcast packet. Without IGMP Snooping, the multicast packet forwarding function is plain and nothing is different from broadcast packet.

A switch supported IGMP Snooping with the functions of query, report and leave, a type of packet exchanged between IP Multicast Router/Switch and IP Multicast Host, can update the information of the Multicast table when a member (port) joins or leaves an IP Multicast Destination Address. With this function, once a switch receives an IP multicast packet, it will forward the packet to the members who joined in a specified IP multicast group before.

The packets will be discarded by the IGMP Snooping if the user transmits multicast packets to the multicast group that had not been built up in advance.

\section*{3-15-1 Proxy}

\section*{Function name:}

IGMP Proxy Configuration
Function description:
IGMP proxy enables the switch to issue IGMP host messages on behalf of hosts that the system discovered through standard IGMP interfaces. The switch acts as a proxy for its hosts.

You enable IGMP proxy on the switch, which connects to a router closer to the root of the tree. This interface is the upstream interface. The router on the upstream interface should be running IGMP.


Fig. 3-163 IGMP Proxy

Parameter description:
IGMP snooping mode selection:
The switch supports three kinds of IGMP Snooping status, including "Passive", "Active" and "Disable".

Disable:
Set "Disable" mode to disable IGMP Snooping function.
Default: Disable
Active:
In Active mode, IGMP snooping switch will periodically issue the Membership Query message to all hosts attached to it and gather the Membership report message to update the database of the Multicast table. By the way, this also reduces the unnecessary multicast traffic.

Passive:
In Passive Snooping mode, the IGMP snooping will not periodically poll the hosts in the groups. The switch will send a Membership Query message to all hosts only when it has received a Membership Query message from a router.

\section*{IP Address:}

Show all multicast groups IP addresses that are registered on this device.

\section*{VLAN ID:}

Show VLAN ID for each multicast group.
Member Port:
Show member ports that join each multicast group. Member port may be only or more than one.

\section*{3-15-2 Group Membership}

Function name:
Group Membership
Function description:
To show the IGMP group members information, the you can edit the parameters for IGMP groups and members in the web user interface.


Fig. 3-164

\section*{Parameter description:}

IP Range:
The switch supports two kinds of options for managed valid IP range, including "Any" and "Custom". Default is "Any". In case that" Custom" had been chosen, you can assigned effective IP range. The valid range is 224.0.0.0~239.255.255.255.

VID:
The switch supports two kinds of options for managed valid VLAN VID, including "Any" and "Custom". Default is "Any". When you choose "Custom", you can fill in VID number. The valid VID range is 1~4094.
Port:
The switch supports two kinds of options for managed valid port range, including "Any" and "Custom". Default is "Any". You can select the ports that you would like them to be worked and restricted in the allowed group configuration if "Custom" had been chosen.
Add:
A new entry of allowed group configuration can be created after the parameters as mentioned above had been setup and then press <Add> button.

Edit:
The existed entry also can be modified after pressing <Edit> button.
Delete:
Remove the existed entry of allowed group configuration from the allowed group.

\section*{3-16. Alarm Configuration}


Function name:
Events Configuration
Function description:
The Trap Events Configuration function is used to enable the switch to send out the trap information while pre-defined trap events occurred. The switch offers 24 different trap events to users for switch management. The trap information can be sent out in three ways, including email, mobile phone SMS (short message system) and trap. The message will be sent while users tick ( \(\boxed{)}\) ) the trap event individually on the web page shown as below.

\section*{Parameter description:}

Trap: Cold Start, Warm Start, Link Down, Link Up, Authentication Failure, User login, User logout

STP: STP Topology Changed, STP Disabled, STP Enabled
LACP: LACP Disabled, LACP Enabled, LACP Member Added, LACP Port Failure

GVRP: GVRP Disabled, GVRP Enabled
VLAN: VLAN Disabled, Port-based VLAN Enabled, Tag-based VLAN Enabled, Metro-mode Vlan Enabled, Double-tag Vlan Enabled
Module Swap: Module Inserted, Module Removed, Dual Media Swapped

\section*{3-16-1 Events}

\section*{Function name:}

Email/SMS Configuration

\section*{Function description:}

Alarm configuration is used to configure the persons who should receive the alarm message via either email or SMS, or both. It depends on your settings. An email address or a mobile phone number has to be set in the web page of alarm configuration (See Fig. 3-61). Then, user can read the trap information from the email or the mobile phone. This function provides 6 email addresses and 6 mobile phone numbers at most. The 24 different trap events will be sent out to SNMP Manager when trap event occurs. After ticking trap events, you can fill in your desired email addresses and mobile phone numbers. Then, please click <Apply> button to complete the alarm configuration. It will take effect in a few seconds.
Note: SMS may not work in your mobile phone system. It is customized for different systems.


Fig. 3-165

\section*{3-16-2 Email}

Parameter description:
Email:
Mail Server: the IP address of the server transferring your email.
Username: your username on the mail server.
Password: your password on the mail server.
Email Address 1 - 6: email address that would like to receive the alarm message.
SMS:
SMS Server: the IP address of the server transferring your SMS.
Username: your username in ISP.
Password: your username in ISP.
Mobile Phone 1-6: the mobile phone number that would like to receive the alarm message.


Fig. 3-166

\section*{3-17. Configuration}

The switch supports three copies of configuration, including the default configuration, working configuration and user configuration for your configuration management. All of them are listed and described below respectively.

\section*{- Default Configuration:}

This is ex-factory setting and cannot be altered. In Web UI, two restore default functions are offered for the user to restore to the default setting of the switch. One is the function of "Restore Default Configuration included default IP address", the IP address will restore to default "192.168.1.1" as you use it. The other is the function of "Restore Default Configuration without changing current IP address", the IP address will keep the same one that you had saved before by performing this function.
- Working Configuration:

It is the configuration you are using currently and can be changed any time. The configurations you are using are saved into this configuration file. This is updated each time as you press <Apply> button.

\section*{- User Configuration:}

It is the configuration file for the specified or backup purposes and can be updated while having confirmed the configuration. You can retrieve it by performing Restore User Configuration.

\section*{3-17-1. Factory Defaults}

Function name:
Restore Default Configuration (includes default IP address)
Function description:
Restore Default Configuration function can retrieve ex-factory setting to replace the start configuration. And the IP address of the switch will also be restored to 192.168.1.1.


Fig. 3-167

\section*{3-17-2 . Save Start}

Function name:
Save As Start Configuration
Function description:
Save the current configuration as a start configuration file in flash memory.


Yes

Fig. 3-168

\section*{3-17-3 . Save User}

Function name:
Save As User Configuration
Function description:
Save the current configuration as a user configuration file in flash memory.

\section*{Save as User Configuration}

Are you sure you want to save the current setting as User Configuration?

Fig. 3-169

\section*{3-17-4 . Restore User}

Function name:
Restore User Configuration

\section*{Function description:}

Restore User Configuration function can retrieve the previous confirmed working configuration stored in the flash memory to update start configuration. When completing to restore the configuration, the system's start configuration is updated and will be changed its system settings after rebooting the system.

\section*{Restore User Configuration}

\section*{Are you sure you want to restore the User Configuration?}

Fig. 3-170

\section*{3-18. Config File}

Function name:
Config File
Function description:
With this function, user can back up or reload the configuration files of Save As Start or Save As User via TFTP.

Parameter description:
Export File Path:
Export Start:
Export Save As Start's config file stored in the flash.
Export User-Conf:
Export Save As User's config file stored in the flash.
Import File Path:
Import Start:
Import Save As Start's config file stored in the flash.
Import User-Conf:
Import Save As User's config file stored in the flash.


Fig. 3-171

\section*{3-19. Diagnostics}

Three functions, including Diagnostics, Loopback Test and Ping Test are contained in this function folder for device self-diagnostics. Each of them will be described in detail orderly in the following sections.


3-19-1 . Diag
Function name:
Diagnostics
Function description:
Diagnostics function provides a set of basic system diagnosis. It let users know that whether the system is health or needs to be fixed. The basic system check includes EEPROM test, UART test, DRAM test and Flash test.


Fig. 3-172

\section*{3-19-2 .Ping}

Function name:
Ping Test
Function description:
Ping Test function is a tool for detecting if the target device is alive or not through ICMP protocol which abounds with report messages. The switch provides Ping Test function to let you know that if the target device is available or not. You can simply fill in a known IP address and then click <Ping> button. After a few seconds later, the switch will report you the pinged device is alive or dead in the field of Ping Result.

\section*{Parameter description:}

IP Address:
An IP address with the version of v4, e.g. 192.168.1.1.
Default Gateway:
IP address of the default gateway.
For more details, please see the section of IP address in Chapter 2.

\section*{ICMP Ping}
\begin{tabular}{lll|} 
& \\
& \\
IP Address & \\
Ping size & 64 \\
&
\end{tabular}

\section*{Start}

Fig. 3-173

\section*{3-19-2 .VeriPHY}

Function name:
VeriPHY

\section*{Function description:}

The switch device includes a comprehensive suite of cable diagnostic function that are available using SMI reads and writes. These functions enable a variety of cable operating conditions and status to be accessed and checked. The VeriPHY suite has the ability to identify the cable and operating conditions and to isolate a variety of common faults that can occur the Cat5 twisted pair cabling.

Note: If a link is established on the twisted pair interface in 1000BASE-T mode, VeriPHY can run without disruption of the link or disruption of any data transfer. However, if a link is established in 100Base-TX or 10Base-T, VeriPHY will cause the link to drop while the diagnostics are running. After the diagnostics are finished, the link will be re-established.

The fillowing diagnostic functions are part of the VeriPHY suite:
- Detection of coupling between cable pairs
- Detection of cable pair termination
- Determination of cable length


Fig. 3-174
Parameter description:
Port \#: Range = 1-24 / All
You can select one port or all ports to do cable diagnostics function.

\section*{3-20 Maintenance}

This chapter will introduce the reset and firmware upgrade function for the firmware upgrade and key parameters change system maintenance requirements.

\section*{3-20-1 .Reset Device}

\section*{Function name:}

Reset Device

\section*{Function description:}

We offer you many ways to reset the switch, including power up, hardware reset and software reset. You can press the RESET button in the front panel to reset the switch. After upgrading software, changing IP configuration or changing VLAN mode configuration, then you must reboot to have the new configuration taken effect. Here we are discussing is software reset for the "reboot" in the main menu.


Fig. 3-175

\section*{3-20-2 .Software Upload}

Function name:
Software Upload
Function description:
Click on <Browse> to select a specific 065-7841 firmware file from the Web management PC, then click on <Upload> to confirm the upgrade firmware action. The new firmware will be uploaded into the switch and write into flash memory. You have to reboot the switch for new firmware take effect after the firmware upgrade successfully.


Fig. 3-176

\section*{3-21 Logout}

You can manually logout by performing Logout function. In the switch, it provides another way to logout. You can configure it to logout automatically.

Function name:
Logout

\section*{Function description:}

The switch allows you to logout the system to prevent other users from the system without the permission. If you do not logout and exit the browser, the switch will automatically have you logout in five minutes. Besides this manually logout.

Parameter description:
Logout:
Click on <Logout> to leave the web UI management function.


Fig. 3-177

\section*{4. Operation of CLI Management}

\section*{4-1. CLI Management}

Refer to Chapter 2 for basic installation. The following description is the brief of the network connection.
-- Locate the correct DB-9 null modem cable with female DB-9 connector. Null modem cable comes with the management switch. Refer to the Appendix B for null modem cable configuration.
-- Attach the DB-9 female connector to the male DB-9 serial port connector on the Management board.
-- Attach the other end of the DB-9 cable to an ASCII terminal emulator or PC Com1, 2 port. For example, PC runs Microsoft Windows HyperTerminal utility.
-- At "Com Port Properties" Menu, configure the parameters as below: (see the next section)
\begin{tabular}{ll} 
Baud rate & 115200 \\
Stop bits & 1 \\
Data bits & 8 \\
Parity & N \\
Flow control & none
\end{tabular}

\section*{4-1-1. Login}

The command-line interface (CLI) is a text-based interface. User can access the CLI through either a direct serial connection to the device or a Telnet session. The default values of the managed switch are listed below:

Username: admin
Password: admin

After you login successfully, the prompt will be shown as "\#" if you are the first login person and your authorization is administrator; otherwise it may show " \(\$\) ". See the following two figures. The former means you behave as an administrator and have the access right of the system. As to the latter, it means you behave as a guest and are only allowed to view the system without the permission to do any setting for this switch.

Managed Switch - 065-7841
Login: admin

Password: ******
065-7841\#

Fig. 4-1

\footnotetext{
Managed Switch - 065-7841
Login: admin
Password: ******

065-7841\$
}

Fig. 4-2

\section*{4-2. Commands of CLI}

To see the commands of the mode, please input "?" after the prompt, then all commands will be listed in the screen. All commands can be divided into two categories, including global commands and local commands. Global commands can be used wherever the mode you are. They are "exit", "end", "help", "history", "logout", "save start", "save user", "restore default" and "restore user". For more details, please refer to Section 4-2-1.

Command instructions reside in the corresponding modes are local commands. The same command with the same command name may occur but perform totally different function in different modes. For example, "show" in IP mode performs displaying the IP information; however, it performs displaying the system information in system mode. For more details, please refer to Section 4-2-2.
```

Managed Switch - 065-7841
Login: admin
Password: *******
065-7841\# ?
802.18
account
acl
alarm
autologout
config-file
debug
f irmware
gurp
hostname
igmp
ip
ip_mac_binding
loop-detection
mac
mirror
mstp
policy
port
Enter into 802.18 mode
Enter into account mode
Enter into acl mode
Enter into alarm mode
Change autologout time
Enter into config file mode
Enter into config file
Enter into firmware mode
Enter into gurp mode
Change hostname
Enter into igmp mode
Enter into ip mode
Enter into ip mac binding mode
Enter into Loop Detection<LD> mode
Enter into mac mode
Enter into mac mode
Enter into mirror mode
Enter into mstp mode
Enter into Management Policy mode
Enter into port mode

```

Fig. 4-3

\section*{4-2-1. Global Commands of CLI}
end

\section*{Syntax:}
end
Description:
Back to the top mode.
When you enter this command, your current position would move to the top mode. If you use this command in the top mode, you are still in the position of the top mode.
Argument:
None.
Possible value:
None.
Example:
065-7841\# alarm
065-7841 (alarm) \# events
065-7841 (alarm-events) \# end

065-7841\#
exit

\section*{Syntax:}
exit
Description:
Back to the previous mode.
When you enter this command, your current position would move back to the previous mode. If you use this command in the top mode, you are still in the position of the top mode.
Argument:
None.
Possible value:
None.
Example:
065-7841\# trunk
065-7841 (trunk) \# exit

065-7841\#
help

\section*{Syntax:}
help

\section*{Description:}

To show available commands.
Some commands are the combination of more than two words. When you enter this command, the CLI would show the complete commands. Besides, the command would help you classify the commands between the local commands and the global ones.
Argument:
None.
Possible value:
None.
Example:
065-7841\# ip
065-7841 (ip) \# help
Commands available:
\begin{tabular}{|c|c|}
\hline set ip & Set ip, subnet mask and gateway \\
\hline set dns & Set dns \\
\hline enable dhap & Enable DHCP, and set dns auto or manual \\
\hline disable dhcp & Disable DHCP \\
\hline show & Show IP Configuration \\
\hline -----<< & 1 commands >>- \\
\hline exit & Back to the previous mode \\
\hline end & Back to the top mode \\
\hline help & Show available commands \\
\hline history & Show a list of previously run commands \\
\hline logout & Logout the system \\
\hline save start & Save as start config \\
\hline save user & Save as user config \\
\hline restore default & Restore default config \\
\hline restore user & Restore user config \\
\hline
\end{tabular}
history

\section*{Syntax:}
history [\#]
Description:
To show a list of previous commands that you had ever run.
When you enter this command, the CLI would show a list of commands which you had typed before. The CLI supports up to 256 records. If no argument is typed, the CLI would list total records up to 256. If optional argument is given, the CLI would only show the last numbers of records, given by the argument.
Argument:
[\#]: show last number of history records. (optional)

\section*{Possible value:}
[\#]: 1, 2, 3, ...., 256
Example:
065-7841(ip)\# history
Command history:
0. trunk
1. exit
2. 065-7841\# trunk
3. 065-7841 (trunk) \# exit
4. 065-7841\#
5. ?
6. trunk
7. exit
8. alarm
9. events
10. end
11. ip
12. help
13. ip
14. history

\section*{065-7841(ip)\# history 3}

Command history:
13. ip
14. history
15. history 3

065-7841 (ip) \#
logout
Syntax:
logout
Description:
When you enter this command via Telnet connection, you would logout the system and disconnect. If you connect the system through direct serial port with RS-232 cable, you would logout the system and be back to the initial login prompt when you run this command.

\section*{Argument:}

None.
Possible value:
None.
Example:
065-7841\# logout
restore default

\section*{Syntax:}
restore default

\section*{Description:}

When you use this function in CLI, the system will show you the information "Do you want to restore the default IP address?(y/n)". If you choose Y or \(y\), the IP address will restore to default "192.168.1.1". If you choose N or n , the IP address will keep the same one that you had saved before.

If restoring default successfully, the CLI would prompt if reboot immediately or not. If you press \(Y\) or \(y\), the system would reboot immediately; otherwise, it would be back to the CLI system. After restoring default configuration, all the changes in the startup configuration would be lost. After rebooting, the entire startup configuration would reset to factory default.

\section*{Argument:}

None.
Possible value:
None.
Example:
065-7841\# restore default
Restoring ..
Restore Default Configuration Successfully
Press any key to reboot system.

\section*{restore user}

\section*{Syntax:}
restore user

\section*{Description:}

To restore the startup configuration as user defined configuration. If restoring default successfully, the CLI would prompt if reboot immediately or not. If you press Y or y , the system would reboot immediately; others would back to the CLI system. After restoring user-defined configuration, all the changes in the startup configuration would be lost. After rebooting, the entire startup configuration would replace as user defined one.
Argument:
None.
Possible value:
None.
Example:
065-7841\# restore user
Restoring ..
Restore User Configuration Successfully
Press any key to reboot system.
save start

\section*{Syntax:}
save start

\section*{Description:}

To save the current configuration as the start one. When you enter this command, the CLI would save your current configuration into the non-volatile FLASH. If you want the configuration still works after rebooting, save the configuration using the command 'save stat'.

\section*{Argument:}

None.
Possible value:
None.
Example:
065-7841\# save start
Saving start...
Save Successfully
065-7841\#
save user

\section*{Syntax:}
save user
Description:
To save the current configuration as the user-defined configuration. When you enter this command, the CLI would save your current configuration into the non-volatile FLASH as user-defined configuration.

\section*{Argument:}

None.
Possible value:
None.
Example:
065-7841\# save user
Saving user...
Save Successfully
065-7841\#

\section*{4-2-2. Local Commands of CLI}
- 802.1X
set max-request

\section*{Syntax:}
set max-request <port-range> <times>

\section*{Description:}

The maximum number of times that the state machine will retransmit an EAP Request packet to the Supplicant before it times out the authentication session.

\section*{Argument:}
<port range> : syntax 1,5-7, available from 1 to 24
<times>: max-times, range 1-10
Possible value:
<port range> : 1 to 24
<times>: 1-10, default is 2
Example:
065-7841(802.1X)\# set max-request 22
set mode
Syntax:
set mode <port-range> <mode>
Description:
To set up the 802.1X authentication mode of each port.
Argument:
<port range> : syntax 1,5-7, available from 1 to 24
<mode>: set up 802.1X mode
0 :disable the 802.1X function
1:set 802.1X to Multi-host mode
Possible value:
<port range> : 1 to 24
<mode>: 0 or 1
Example:
065-7841(802.1X)\# set mode 21
065-7841(802.1X)\#
```

set port-control

```

\section*{Syntax:}
set port-control <port-range> <authorized>

\section*{Description:}

To set up 802.1X status of each port.
Argument:
<port range> : syntax 1,5-7, available from 1 to 24
<authorized> : Set up the status of each port
0 :ForceUnauthorized
1:ForceAuthorized
2:Auto

\section*{Possible value:}
<port range> : 1 to 24
<authorized> : 0, 1 or 2
Example:
065-7841(802.1X)\# set port-control 22
set quiet-period
Syntax:
set quiet-period <port-range> <sec>

\section*{Description:}

A timer used by the Authenticator state machine to define periods of time during when it will not attempt to acquire a Supplicant.
Argument:
<port range> : syntax 1,5-7, available from 1 to 24
<sec> : timer, range 0-65535
Possible value:
<port range> : 1 to 24
<sec> : 0-65535, default is 60
Example:
065-7841(802.1X)\# set quiet-period 230

\section*{set reAuthEnabled}

\section*{Syntax:}
set reAuthEnabled <port-range> <ebl>
Description:
A constant that define whether regular reauthentication will take place on this port.
Argument:
<port range> : syntax 1,5-7, available from 1 to 24
<ebl>:
0:OFF Disable reauthentication
1:ON Enable reauthentication

\section*{Possible value:}
<port range>: 1 to 24
<ebl> : 0 or 1, default is 1

\section*{Example:}

065-7841(802.1X)\# set reAuthEnabled 21
```

set reAuthMax

```

\section*{Syntax:}
set reAuthMax <port-range> <max>

\section*{Description:}

The number of reauthentication attempts that are permitted before the port becomes Unauthorized.

\section*{Argument:}
<port range> : syntax 1,5-7, available from 1 to 24
<max> : max. value, range 1-10
Possible value:
<port range> : 1 to 24
<max> : 1-10, default is 2

\section*{Example:}

065-7841(802.1X)\# set reAuthMax 22
set reAuthPeriod

\section*{Syntax:}
set reAuthPeriod <port-range> <sec>
Description:
A constant that defines a nonzero number of seconds between periodic reauthentication of the supplicant.
Argument:
<port range> : syntax 1,5-7, available from 1 to 24
<sec> : timer, range 1-65535
Possible value:
<port range> : 1 to 24
<sec> : 1-65535, default is 3600
Example:
065-7841(802.1X)\# set reAuthPeriod 23600
set serverTimeout

\section*{Syntax:}
set serverTimeout <port-range> <sec>

\section*{Description:}

A timer used by the Backend Authentication state machine in order to determine timeout conditions in the exchanges between the Authenticator and the Supplicant or Authentication Server. The initial value of this timer is either suppTimeout or serverTimeout, as determined by the operation of the Backend Authentication state machine.
Argument:
<port range> : syntax 1,5-7, available from 1 to 24
<sec> : timer, range 1-65535
Possible value:
<port range> : 1 to 24
<sec> : 1-65535, default is 30

\section*{Example:}

065-7841(802.1X)\# set serverTimeout 230
set state

\section*{Syntax:}

\section*{Signamax \({ }^{\text {TM }} 065-7841\) 24-Port 10/100/1000BaseT/TX Managed Switch}
set state <ip> <port-number> <secret-key>

\section*{Description:}

To configure the settings related with 802.1X Radius Server.

\section*{Argument:}
<ip> : the IP address of Radius Server
<port-number> : the service port of Radius Server(Authorization port)
<secret-key> : set up the value of secret-key, and the length of secret-key is from 1 to 31
Possible value:
<port-number> : 1~65535, default is 1812
Example:
065-7841(802.1X)\# set state 192.168.1.115 1812 WinRadius

\section*{set suppTimeout}

\section*{Syntax:}
set suppTimeout <port-range> <sec>
Description:
A timer used by the Backend Authentication state machine in order to determine timeout conditions in the exchanges between the Authenticator and the Supplicant or Authentication Server. The initial value of this timer is either suppTimeout or serverTimeout, as determined by the operation of the Backend Authentication state machine.
Argument:
<port range> : syntax 1,5-7, available from 1 to 24
<sec> : timer, range 1-65535
Possible value:
<port range> : 1 to 24
<sec> : 1-65535, default is 30
Example:
065-7841(802.1X)\# set suppTimeout 230
set txPeriod

\section*{Syntax:}
set txPeriod <port-range> <sec>

\section*{Description:}

A timer used by the Authenticator PAE state machine to determine when an EAPOL PDU is to be transmitted

\section*{Argument:}
<port range> : syntax 1,5-7, available from 1 to 24
<sec> : timer, range 1-65535
Possible value:
<port range> : 1 to 24
<sec> : 1-65535, default is 30

\section*{Example:}

065-7841(802.1X)\# set txPeriod 230
show mode

\section*{Syntax:}
show mode
Description:

To display the mode of each port.
Argument:
None
Possible value:
None
Example:
065-7841(802.1X)\# show mode
Port Mode
====== ============
1 Disable
2 Multi-host
3 Disable
4 Disable
5 Disable
6 Disable
:
:
show parameter
Syntax:
show parameter
Description:
To display the parameter settings of each port.
Argument:
None
Possible value:
None
Example:
065-7841(802.1X)\# show parameter
```

port 1) port control : Auto
reAuthMax : 2
txPeriod : 30
Quiet Period : 60
reAuthEnabled : ON
reAuthPeriod : 3600
max. Request : 2
suppTimeout : 30
serverTimeout : 30

```
```

port 2) port control : Auto
reAuthMax : 2
txPeriod : 30
Quiet Period : 60
reAuthEnabled : ON
reAuthPeriod : 3600
max. Request : 2
suppTimeout : 30
serverTimeout : 30
show security
Syntax:
show security
Description:
To display the authentication status of each port.
Argument:
None
Possible value:
None
Example:
065-7841(802.1X)\# show security
Port Mode Status
====== ============ ==============
1 Disable
2 Multi-host Unauthorized
Disable
D Disable
Disable
6 Disable
show state
Syntax:
show state
Description:
Show the Radius server configuration
Argument:
None
Possible value:
None
Example:
065-7841(802.1X)\# show state
Radius Server: 192.168.1.115
Port Number : }181
Secret Key : WinRadius

- account

```
add

\section*{Syntax: \\ add <name> \\ Description:}

To create a new guest user. When you create a new guest user, you must type in password and confirm password.

\section*{Argument:}
<name> : new account name
Possible value:
A string must be at least 5 character.
Example:
065-7841 (account) \# add aaaaa
Password:
Confirm Password:
Save Successfully
065-7841 (account) \#
del

Syntax:
del <name>
Description:
To delete an existing account.
Argument:
<name> : existing user account
Possible value:
None.
Example:
065-7841 (account) \# del aaaaa
Account aaaaa deleted
modify
Syntax:
modify <name>
Description:
To change the username and password of an existing account.
Argument:
<name> : existing user account
Possible value:
None.
Example:
065-7841 (account) \# modify aaaaa
username/password: the length is from 5 to 15.
Current username (aaaaa) :bbbbb
New password:
Confirm password:
Username changed successfully.
Password changed successfully.
show
Syntax:
show
Description:
To show system account, including account name and identity.
Argument:
None.
Possible value:
None.
Example:
065-7841 (account) \# show
\begin{tabular}{|c|c|}
\hline Account Name & Identity \\
\hline admin & Administrator \\
\hline guest & guest \\
\hline
\end{tabular}

\section*{- alarm}
<<email>>
del mail-address
Syntax:
del mail-address <\#>
Description:
To remove the configuration of E-mail address.
Argument:
<\#>: email address number, range: 1 to 6
Possible value:
<\#>: 1 to 6
Example:
065-7841 (alarm-email) \# del mail-address 2
del server-user

\section*{Syntax:}
del server-user
Description:
To remove the configuration of server, user account and password.
Argument:
None.
Possible value:
None.
Example:
065-7841 (alarm-emai1) \# del server-user
set mail-address
Syntax:
set mail-address <\#> <mail address>
Description:
To set up the email address.
Argument:
<\#> :email address number, range: 1 to 6
<mail address>:email address
Possible value:
<\#>: 1 to 6
Example:
065-7841(alarm-email)\# set mail-address 1 abc@mail.abc.com
set server

\section*{Syntax:}
set server <ip>
Description:
To set up the IP address of the email server.
Argument:
<ip>:email server ip address or domain name
Possible value:
None.
Example:
065-7841 (alarm-email) \# set server 192.168.1.6
set user

\section*{Syntax:}
set user <username>
Description:
To set up the account and password of the email server.
Argument:
<username>: email server account and password
Possible value:
None.
Example:
065-7841 (alarm-emai1) \# set user admin
show

\section*{Syntax:}
show
Description:
To display the configuration of e-mail.
Argument:
None.
Possible value:
None.
Example:
065-7841 (alarm-emai1) \# show
Mail Server : 192.168.1.6
Username : admin
Password : \(* * * * * * * * * * * * * * * *\)
Email Address 1: abc@mail. abc. com
Email Address 2:
Email Address 3:
Email Address 4:
Email Address 5:
Email Address 6:
<<events>>
del all
Syntax:
del all <range>
Description:
To disable email, sms and trap of events.
Argument:
<range>:del the range of events, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events)\# del all 1-3
del email
Syntax:
del email <range>
Description:
To disable the email of the events.
Argument:
<range>:del the range of email, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events) \# del email 1-3
del sms

\section*{Syntax:}
del sms <range>
Description:
To disable the sms of the events.
Argument:
<range>:del the range of sms, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events) \# del sms 1-3
del trap

\section*{Syntax:}
del trap <range>
Description:
To disable the trap of the events.
Argument:
<range>:del the range of trap, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events) \# del trap 1-3
set all

\section*{Syntax:}
set all <range>
Description:
To enable email, sms and trap of events.
Argument:
<range>:set the range of events, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events) \# set all 1-3
set email

\section*{Syntax:}
set email <range>
Description:
To enable the email of the events.
Argument:
<range>:set the range of email, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events)\# set email 1-3

\section*{set sms}

\section*{Syntax:}
set sms <range>
Description:
To enable the sms of the events.
Argument:
<range>:set the range of sms, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events) \# set sms 1-3
set trap

\section*{Syntax:}
set trap <range>
Description:
To enable the trap of the events.
Argument:
<range>:set the range of trap, syntax 1,5-7
Possible value:
<range>: 1~24
Example:
065-7841 (alarm-events) \# set trap 1-3
show

Syntax:
show
Description:
To display the configuration of alarm event.
Argument:
None.
Possible value:
None.

\section*{Example:}

065-7841 (alarm-events) \# show Events Email SMS Trap

1 Cold Start v
2 Warm Start v
3 Link Down v
4 Link Up v
5 Authentication Failure v
6 User Login
7 User Logout
8 STP Topology Changed
9 STP Disabled
10 STP Enabled
11 LACP Disabled
12 LACP Enabled
13 LACP Member Added
14 LACP Port Failure
15 GVRP Disabled
16 GVRP Enabled
17 VLAN Disabled
18 Port-based Vlan Enabled
19 Tag-based Vlan Enabled
20 Metro-mode Vlan Enabled
21 Double-tag Vlan Enabled
22 Module Inserted
23 Module Removed
24 Moudle Media Swapped
show (alarm)
Syntax:
show
Description:
The Show for alarm here is used to display the configuration of Trap, SMS or E-mail.
Argument:
None.
Possible value:
None.
Example:
065-7841 (alarm) \# show events
065-7841 (alarm)\# show email
065-7841 (alarm) \# show sms
<<sms>>
del phone-number
Syntax:
del phone-number <\#>
Description:
To delete sms phone number.
Argument:
<\#>: mobile phone number, range: 1 to 6
Possible value:
<\#>: 1 to 6
Example:
065-7841 (alarm-sms) \# del phone-number 3
del server-user

\section*{Syntax:}
del server-user
Description:
To delete sms server, user account and password.
Argument:
None.
Possible value:
None.
Example:
065-7841 (alarm-sms) \# del server-user
set phone-number

\section*{Syntax:}
set phone-number <\#> <phone-number>
Description:
To add sms phone number.
Argument:
<\#>: mobile phone number, range: 1 to 6
<phone-number>: phone number
Possible value:
<\#>: 1 to 6
Example:
065-7841 (alarm-sms) \# set phone-number 10968777777
set server

\section*{Syntax:}
set server <ip>
Description:
To set up the IP address of sms server.
Argument:
<ip>: SMS server ip address or domain name
Possible value:
None.
Example:
065-7841 (alarm-sms) \# set server 192.168.1.7
set user

\section*{Syntax:}
set user <username>
Description:
To set up user account and password of sms server.
Argument:
<username>: SMS server account
Possible value:
None.
Example:
065-7841 (alarm-sms) \# set user ABC
show

\section*{Syntax:}
show
Description:
To display the configuration of SMS trap event.
Argument:
None.
Possible value:
None.
Example:
065-7841 (alarm-sms) \# show
SMS Server : 192.168.1.7
Username : ABC
Password : ******************
Mobile Phone 1: 0968777777
Mobile Phone 2:
Mobile Phone 3:
Mobile Phone 4:
Mobile Phone 5:
Mobile Phone 6:

\section*{- autologout}
autologout

\section*{Syntax:}
autologout <time>
Description:
To set up the timer of autologout.
Argument:
<time>: range 1 to 3600 seconds, 0 for autologout off, current setting is 180 seconds.
Possible value:
<time>: 0,1-3600
Example:
065-7841\# autologout 3600
Set autologout time to 3600 seconds

\section*{- bandwidth}
disable egress-rate
Syntax:
disable egress-rate <range>
Description:
To cancel the egress-rate of the port.
Argument:
<range>:syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(bandwidth)\# disable egress-rate 1-8
disable ingress-rate

\section*{Syntax:}
disable ingress-rate <range>

\section*{Description:}

To cancel the Ingress-rate of the port.
Argument:
<range>:syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(bandwidth)\# disable ingress-rate 1-8
disable storm-rate

\section*{Syntax:}
disable storm-rate <range>
Description:
To cancel the storm-rate of the port.
Argument:
<range>:syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(bandwidth)\# disable storm-rate 1-8
enable egress-rate
```

Syntax:
enable egress-rate <range> <data_rate>

```

Description:
To set up the egress-rate of the port.
Argument:
<range>:syntax 1,5-7, available from 1 to 24
<data_rate>: 0-1000
Possible value:
<range>: 1 to 24
<data_rate>: 0-1000
Example:
065-7841(bandwidth)\# enable egress-rate 1-16 200
enable ingress-rate
Syntax:
enable ingress-rate <range> <data_rate>
Description:
To set up the Ingress-rate of the ports.
Argument:
<range>:syntax 1,5-7, available from 1 to 24
<data_rate>: 0-1000
Possible value:
<range>: 1 to 24
<data_rate>: 0-1000
Example:
065-7841(bandwidth)\# enable ingress-rate 1-16 100
enable storm-rate

\section*{Syntax:}
enable storm-rate <range> <data_rate>

\section*{Description:}

To set up the storm-rate of the ports.
Argument:
<range>:syntax 1,5-7, available from 1 to 24
<data_rate>: 0-1000
Possible value:
<range>: 1 to 24
<data_rate>: 0-1000

\section*{Example:}

065-7841(bandwidth)\# enable strom-rate 1-16 150

\section*{Syntax:}
show
Description:
To display all current settings of the bandwidth.
Argument:
None
Possible value:
None
Example:
065-7841(bandwidth)\# show
Ingress
Egress

... (q to quit)
\begin{tabular}{lllllll}
21 & Disabled & 0 & Disabled & 0 & Disabled & 0 \\
22 & Disabled & 0 & Disabled & 0 & Disabled & 0 \\
23 & Disabled & 0 & Disabled & 0 & Disabled & 0 \\
24 & Disabled & 0 & Disabled & 0 & Disabled & 0
\end{tabular}

\section*{- config-file}
export start

\section*{Syntax:}
export start
Description:
To run the export start function.
Argument:
None
Possible value:
None
Example:
065-7841(config-file)\# export start
Export successful.
export user-conf

\section*{Syntax:}
export user-conf
Description:
To run the export user-conf function.
Argument:
None
Possible value:
None
Example:
065-7841(config-file)\# export user-conf
Export successful.
import start
Syntax:
import start
Description:
To run the import start function.
Argument:
None
Possible value:
None
Example:
065-7841(config-file)\# import start
Import successful.
import user-conf

\section*{Syntax: \\ import user-conf \\ Description:}

To run the import user-conf function.
Argument:
None
Possible value:
None
Example:
065-7841(config-file)\# import user-conf Import successful.
set export-path

\section*{Syntax:}
set export-path <filepath>
Description:
To set up the filepath and filename that will be exported.
Argument:
<filepath>:filepath and filename
Possible value:
<filepath>:filepath and filename
Example:
065-7841(config-file)\# set export-path log/21511.txt
set import-path

\section*{Syntax:}
set import-path <filepath>
Description:
To set up the filepath and filename that will be imported.
Argument:
<filepath>:filepath and filename
Possible value:
<filepath>:filepath and filename
Example:
065-7841(config-file)\# set import-path log/21511.txt
show

Syntax:
show
Description:
To display the config-file information.
Argument:
None
Possible value:
None
Example:
065-7841(config-file)\# show
TFTP Server IP Address: 192.168.3.111
Export Path and Filename: nmap/123.ts
Import Path and Filename: user123.txt
- dhcp-boot
set dhcp-boot
Syntax:
set dhcp-boot <sec>
Description:
To set up the delay time for DHCP Boot.
Argument:
<sec>:range syntax: 0, 1-30. The value " 0 " is to disable dhcp-boot delay
Possible value:
<sec>:0-30
Example:
065-7841(dhcp-boot)\# set dhcp-boot 30
show
Syntax:
show
Description:
To display the status of DHCP Boot.
Argument:
None
Possible value:
None
Example:
065-7841(dhcp-boot)\#show
dhcp boot: Enable
Second : 10

\section*{- diag}
diag
Syntax:
diag
Description:
Diag is used to test whether UART, DRAM, Flash and EEPROM is normal or not.
Argument:
None.
Possible value:
None.
Example:
065-7841 (diag) \# diag
EEPROM Test : OK
UART Test : OK
DRAM Test : OK
Flash Test : OK
loopback

Syntax:
Loopback
Description:
For Internal/External Loopback Test.

\section*{Argument:}

None.
Possible value:
None.
Example:
065-7841 (diag) \# loopback
Internal Loopback Test : OK

External Loopback Test : Port \(12 \begin{array}{llllllllllllllll} & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}\)
192021222324 Fail
ping

\section*{Syntax:}
ping <ip>
Description:
To confirm that whether the remote end-station or switch itself is alive or not.
Argument:
<ip> : ip address or domain name
Possible value:
IP address, e.g. 192.168.2.65 or domain name, e.g. tw.yahoo.com
Example:
065-7841 (diag) \# ping 192.168.1.115
Gateway : 192.168.1.253
192.168.1. 115 is alive.

\section*{- firmware}
set upgrade-path
Syntax:
set upgrade-path <filepath>
Description:
To set up the image file that will be upgraded.
Argument:
<filepath>: upgrade file path
Possible value:
<filepath>: upgrade file path
Example:
065-7841(firmware)\# set upgrade-path 065-7841_v2.03.img
show
Syntax:
show
Description:
To display the information of tftp server and upgrade-path.
Argument:
None
Possible value:
None
Example:
065-7841(firmware)\# show
TFTP Server IP Address: 192.168.3.111
Path and Filename : 065-7841_v2.03.img
upgrade

\section*{Syntax:}
upgrade
Description:
To run the upgrade function.
Argument:
None
Possible value:
None
Example:
065-7841(firmware)\# upgrade
Upgrading firmware ...

\section*{- gvrp}

\section*{disable}

Syntax:
disable
Description:
To disable the gvrp function.
Argument:
None
Possible value:
None
Example:
065-7841(gvrp)\# disable
enable

\section*{Syntax:}
enable

\section*{Description:}

To enable the gvrp function.
Argument:
None
Possible value:
None
Example:
065-7841(gvrp)\# enable

\section*{group}

\section*{Syntax:}
group <group number>

\section*{Description:}

To enter any of gvrp group for changing gvrp group setting. You can change the applicant or registrar mode of existing gvrp group per port.
Argument:
<group number>: enter which gvrp group you had created, using value is vid.
Available range: 1 to 4094
Possible value:
<group number>: 1~4094
Example:
065-7841 (gvrp) \# show group
GVRP group information
Current Dynamic Group Number: 1
VID Member Port
25
```

065-7841(gvrp)\# group 2
065-7841(gvrp-group-2)\# set applicant 1-6 non-participant
065-7841(gvrp-group-2)\# show
GVRP group VID: 2
Port Applicant Registrar
1 Non-Participant Normal
2 Non-Participant Normal
N Non-Participant Normal
Non-Participant Normal
N Non-Participant Normal
N Non-Participant Normal
7 Normal Normal
N Normal Normal
12 Normal Normal
13 Normal Normal
23 Normal Norma1
24 Normal Normal
065-7841(gvrp-group-2)\# set registrar 1-10 fixed
065-7841(gvrp-group-2)\# show
GVRP group VID: 2
Port Applicant Registrar
1 Non-Participant Fixed
2 Non-Participant Fixed
3 Non-Participant Fixed
N Non-Participant Fixed
5 Non-Participant Fixed
6 Non-Participant Fixed
7 Normal Fixed
8 Normal Fixed
9 Normal Fixed
10 Normal Fixed
17 Normal Normal
23 Normal Normal
24 Normal Normal

```

\section*{set applicant}

Syntax:
set applicant <range> <normal|non-participant>
Description:
To set default applicant mode for each port.

\section*{Argument:}
<range>: port range, syntax 1,5-7, available from 1 to 24
<normal>: set applicant as normal mode
<non-participant>: set applicant as non-participant mode
Possible value:
<range>: 1 to 24
<normal|non-participant>: normal or non-participant
Example:
065-7841(gvrp)\# set applicant 1-10 non-participant
set registrar

\section*{Syntax:}
set registrar <range> <normal|fixed|forbidden>

\section*{Description:}

To set default registrar mode for each port.
Argument:
<range>: port range, syntax 1,5-7, available from 1 to 24
<normal>: set registrar as normal mode
<fixed>: set registrar as fixed mode
<forbidden>: set registrar as forbidden mode
Possible value:
<range>: 1 to 24
<normal|fixed|forbidden>: normal or fixed or forbidden
Example:
065-7841(gvrp)\# set registrar 1-5 fixed

\section*{set restricted}

\section*{Syntax:}
set restricted <range> <enable|disable>
Description:
To set the restricted mode for each port.

\section*{Argument:}
<range>: port range, syntax 1,5-7, available from 1 to 24
<enable>: set restricted enabled
<disable>: set restricted disabled
Possible value:
<range>: 1 to 24
<enable|disable>: enable or disable
Example:
065-7841 (gvrp) \# set restricted 1-10 enable
065-7841 (gvrp) \# show config
GVRP state: Enable
Port Join Time Leave Time LeaveAll Time Applicant Registrar Restricted
\begin{tabular}{rllllll}
\hline 1 & 20 & 60 & 1000 & Normal & Normal & Enable \\
2 & 20 & 60 & 1000 & Normal & Normal & Enable \\
3 & 20 & 60 & 1000 & Normal & Normal & Enable \\
4 & 20 & 60 & 1000 & Normal & Normal & Enable \\
5 & 20 & 60 & 1000 & Normal & Normal & Enable \\
6 & 20 & 60 & 1000 & Normal & Normal & Enable \\
7 & 20 & 60 & 1000 & Normal & Normal & Enable \\
8 & 20 & 60 & 1000 & Normal & Normal & Enable \\
9 & 20 & 60 & 1000 & Normal & Normal & Enable \\
10 & 20 & 60 & 1000 & Normal & Normal & Enable \\
& & & & \(:\) & & \\
& & & & \(\vdots\) & & \\
22 & 20 & 60 & 1000 & Normal & Normal & Disable \\
23 & 20 & 60 & 1000 & Normal & Normal & Disable \\
24 & 20 & 60 & 1000 & Normal & Normal & Disable
\end{tabular}
set timer

Syntax:
set timer <range> <join> <leave> <leaveall>
Description:
To set gvrp join time, leave time, and leaveall time for each port.
Argument:
<range> : port range, syntax 1,5-7, available from 1 to 24
<join>: join timer, available from 20 to 100
<leave>: leave timer, available from 60 to 300
<leaveall>: leaveall timer, available from 1000 to 5000
Leave Time must equal double Join Time at least.

\section*{Possible value:}
<range> : 1 to 24
<join>: 20 to 100
<leave>: 60 to 300
<leaveall>: 1000 to 5000
Example:
065-7841(gvrp)\# set timer 2-8 25802000
show config

\section*{Syntax:}
show config
Description:
To display the gvrp configuration.
Argument:
None
Possible value:
None
Example:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Port & Join Time & Leave Time & LeaveAll Time & Applicant & Registrar & Restricted \\
\hline 1 & 20 & 60 & 1000 & Normal & Normal & Disable \\
\hline 2 & 25 & 80 & 2000 & Normal & Normal & Disable \\
\hline 3 & 25 & 80 & 2000 & Normal & Normal & Disable \\
\hline 4 & 25 & 80 & 2000 & Normal & Normal & Disable \\
\hline 5 & 25 & 80 & 2000 & Normal & Normal & Disable \\
\hline 6 & 25 & 80 & 2000 & Normal & Normal & Disable \\
\hline 7 & 25 & 80 & 2000 & Normal & Normal & Disable \\
\hline 8 & 25 & 80 & 2000 & Normal & Normal & Disable \\
\hline & & & & : & & \\
\hline 23 & 20 & 60 & 1000 & Normal & Normal & Disable \\
\hline 24 & 20 & 60 & 1000 & Normal & Normal & Disable \\
\hline
\end{tabular}

\section*{show counter}

\section*{Syntax:}
show counter <port>
Description:
To display the counter number of the port.
Argument:
<port>: port number
Possible value:
<port>: available from 1 to 24

\section*{Example:}

065-7841 (gvrp) \# show counter 2
GVRP Counter port: 2
Counter Name Received Transmitted
\begin{tabular}{llr} 
Total GVRP Packets & 0 & 0 \\
Invalid GVRP Packets & 0 & --- \\
LeaveAll message & 0 & 0 \\
JoinEmpty message & 0 & 0 \\
JoinIn message & 0 & 0 \\
LeaveEmpty message & 0 & 0 \\
Empty message & 0 & 0
\end{tabular}

\section*{show group}

\section*{Syntax:}
show group
Description:
To show the gvrp group.
Argument:
None.
Possible value:
None.
Example:
065-7841 (gvrp) \# show group
GVRP group information
VID Member Port

\section*{- hostname}
hostname

\section*{Syntax:}
hostname <name>
Description:
To set up the hostname of the switch.
Argument:
<name>: hostname, max. 40 characters.
Possible value:
<name>: hostname, max. 40 characters.
Example:
065-7841\# hostname Company
Company\#

\section*{- igmp-snooping}
add allowed-group
Syntax:
add allowed-group <ip-multicast> <vid> <port-range>

\section*{Description:}

To add the entry of allowed IP multicast group.
Argument:
<ip-multicast>: the range of IP multicast.
<vid>: vlan ID. 0-4094 or any. "0" value means tag-based vlan disable
<port-range>: syntax 1,5-7, available from 1 to 24
Possible value:
<ip-multicast>: ex: 224.1.1.1-225.2.3.3 or any
<vid>: 0-4094 or any
<port-range>: 1 to 24
Example:
065-7841(igmp-snooping)\# add allowed-group 224.1.1.1-225.2.3.3 100 1-10
del allowed-group

\section*{Syntax:}
del allowed-group <index>
Description:
To remove the entry of allowed ip multicast group
Argument:
<index>: the index of the allowed-group.
Possible value:
<index>: the index of the allowed-group.
Example:
065-7841(igmp-snooping)\# del allowed-group 1
set mode

\section*{Syntax:}
set mode <status>

\section*{Description:}

To set up the mode of IGMP Snooping.
Argument:
<status>: 0:disable, 1:active, 2:passive
Possible value:
<status>: 0,1or 2
Example:
065-7841(igmp-snooping)\# set mode 2
show igmp-snooping
Syntax:
show igmp-snooping
Description:
To display IGMP snooping mode and allowed IP multicast entry.
Argument:
None.
Possible value:
None.
Example:
065-7841(igmp-snooping)\# show igmp-snooping
Snoop Mode: Active
IP Multicast:
1) IP Address : 224.1.1.1

VLAN ID : 0
Member Port : 22
show multicast
Syntax:
show multicast
Description:
To display IP multicast table.
Argument:
None.
Possible value:
None.
Example:
065-7841(igmp-snooping)\# show multicast
IP Multicast: None

\section*{- IP}
disable dhcp
Syntax:
disable dhcp
Description:
To disable the DHCP function of the system.
Argument:
None
Possible value:
None
Example:
065-7841(ip)\# disable dhcp
enable dhcp

\section*{Syntax:}
enable dhcp <manual|auto>

\section*{Description:}

To enable the system DHCP function and set DNS server via manual or auto mode.
Argument:
<manual|auto> : set dhcp by using manual or auto mode.
Possible value:
<manual|auto> : manual or auto
Example:
065-7841(ip)\# enable dhcp manual
set dns

\section*{Syntax:}
set dns <ip>
Description:
To set the IP address of DNS server.
Argument:
<ip> : dns ip address
Possible value:
168.95.1.1

Example:
065-7841 (ip)\# set dns 168.95.1.1
set ip

\section*{Syntax:}
set ip <ip> <mask> <gateway>
Description:
To set the system IP address, subnet mask and gateway.

\section*{Argument:}
<ip>: ip address
<mask> : subnet mask
<gateway> : default gateway
Possible value:
<ip> : 192.168.1.2 or others
<mask> : 255.255.255.0 or others
<gateway> : 192.168.1.253 or others

\section*{Example:}

065-7841(ip)\# set ip 192.168.1.2 255.255.255.0 192.168.1.253
show
Syntax:
show
Description:
To display the system's DHCP function state, IP address, subnet mask, default gateway, DNS mode, DNS server IP address and current IP address.
Argument:
None
Possible value:
None
Example:
065-7841 (ip) \# show
\begin{tabular}{ll} 
DHCP & \(:\) Disable \\
IP Address & \(: 192.168 .2 .237\) \\
Current IP Address & \(: 192.168 .2 .237\) \\
Subnet mask & \(:\) \\
Gateway & \(: 195.255 .255 .0\) \\
DNS Setting & \(:\) Manual \\
DNS Server & \(: 168.95 .1 .1\)
\end{tabular}
- \(\log\)
clear
Syntax:
clear
Description:
To clear the log data.
Argument:
None.
Possible value:
None.
Example:
065-7841(log)\# clear
disable auto-upload

\section*{Syntax:}
disable auto-upload
Description:
To disable the auto-upload function.
Argument:
None.
Possible value:
None.
Example:
065-7841(log)\# disable auto-upload
enable auto-upload
Syntax:
enable auto-upload
Description:
To enable the auto-upload function.
Argument:
None.
Possible value:
None.
Example:
065-7841(log)\# enable auto-upload
show

\section*{Syntax:}
show
Description:
To show a list of trap log events. When any of log events happens, it will be recorded and using show command in log function to query. Up to 120 log records are supported.
Argument:
None.
Possible value:
None.
Example:
065-7841 (1og) \# show

Tftp Server : 0.0.0.0
Auto Upload : Disable
1) Wed Apr 13 12:13:27 2005 Link Up [Port 1]
2) Wed Apr 13 12:13:26 2005 Link Down [Port 1]
3) Wed Apr 13 11:58:31 2005 Login [admin]
4) Wed Apr 13 11:19:45 2005 Login [admin]
5) Wed Apr 13 11:19:37 2005 Logout [admin]
upload

\section*{Syntax:}
upload
Description:
To upload log data through tftp.
Argument:
None.
Possible value:
None.
Example:
065-7841(log)\# upload

\section*{- mac-table}
<<alias>>
del
Syntax:
del <mac>
Description:
To delete the mac alias entry.
Argument:
<mac> : mac address, format: 00-02-03-04-05-06
Possible value:
<mac> : mac address
Example:
065-7841(mac-table-alias)\# del 00-44-33-44-55-44
set
Syntax:
set <mac> <alias>
Description:
To set up the mac alias entry.
Argument:
<mac> : mac address, format: 00-02-03-04-05-06
<alias> : mac alias name, max. 15 characters
Possible value:
None
Example:
065-7841(mac-table-alias)\# set 00-44-33-44-55-44 www
show

\section*{Syntax:}
show
Description:
To display the mac alias entry.
Argument:
None
Possible value:
None
Example:
065-7841(mac-table-alias)\# show
MAC Alias List
MAC Address Alias
1) \(00-02-03-04-05-06 \mathrm{aaa}\)
2) \(00-33-03-04-05-06 \mathrm{ccc}\)
3) \(00-44-33-44-55-44 \mathrm{www}\)
search

\section*{Syntax:}
search <port> <mac> <vid>
Description:
To look for the relative mac information in mac table.
Argument:
<port> : set up the range of the ports to search for, syntax 1,5-7, available form 1 to 24
<mac> : mac address, format: 01-02-03-04-05-06, '?' can be used <vid> : vlan id, from 1 to 4094; '?' as don't care, 0 as untagged
Possible value:
<port> :1 to 24
<vid>: 0, 1~4094

\section*{Example:}

065-7841 (mac-table-information) \# search 1-24 ??-??-??-??-??-?? ?
MAC Table List
Alias MAC Address Port VID State

00-40-c7-88-00-06 \(1 \quad 0\) Dynamic
show

\section*{Syntax:}
show
Description:
To display all mac table information.
Argument:
None
Possible value:
None
Example:
065-7841 (mac-table-information) \# show
MAC Table List
\begin{tabular}{|c|c|c|c|}
\hline Alias & MAC Address & Port VID & State \\
\hline & 00-10-db-1d-c5-a0 & 160 & ) Dynamic \\
\hline & 00-40-f4-89-c9-7f & 160 & ) Dynamic \\
\hline & 00-e0-18-2b-9d-e2 & 160 & ) Dynamic \\
\hline & 00-40-c7-d8-00-02 & 160 & ) Dynamic \\
\hline
\end{tabular}
<<maintain>>
set aging
Syntax:
set aging <\#>
Description:
To set up the age out time of dynamic learning mac.
Argument:
<\#>: age-timer in seconds, 0, 10 to 65535 . The value " 0 " means to disable aging Possible value:
<\#>: 0, 10 to 65535.
Example:
065-7841(mac-table-maintain)\# set aging 300
set flush

\section*{Syntax:}
set flush
Description:
To delete all of the MACs that is learned dynamically.
Argument:
None.
Possible value:
None.
Example:
065-7841(mac-table-maintain)\# set flush
show

\section*{Syntax:}
show
Description:
To display the settings of age-timer.
Argument:
None
Possible value:
None
Example:
065-7841(mac-table-maintain)\# show
age-timer : 300 seconds
065-7841(mac-table-maintain)\#
```

<<static-mac>>

```
add

\section*{Syntax:}
add <mac> <port> <vid> [alias]
Description:
To add the static mac entry.
Argument:
<mac> : mac address, format: 00-02-03-04-05-06
<port> : 0-24. The value " 0 " means this entry is filtering entry
<vid> : vlan id. 0, 1-4094. VID must be zero if vlan mode is not tag-based
[alias] : mac alias name, max. 15 characters
Possible value:
<mac> : mac address
<port> : 0-24
<vid>: 0, 1-4094
[alias] : mac alias name
Example:
065-7841(mac-table-static-mac)\# add 00-02-03-04-05-06 30 aaa
065-7841(mac-table-static-mac) \#
del
Syntax:
del <mac> <vid>
Description:
To remove the static mac entry.

\section*{Argument:}
<mac> : mac address, format: 00-02-03-04-05-06
<vid> : vlan id. 0, 1-4094. VID must be zero if vlan mode is not tag-based
Possible value:
<mac> : mac address
<vid> : 0, 1-4094
Example:
065-7841(mac-table-static-mac)\# del 00-02-03-04-05-06 0
065-7841(mac-table-static-mac)\#
show filter

\section*{Syntax:}
show filter
Description:
To display the static filter table.
Argument:
None
Possible value:
None
Example:
065-7841(mac-table-static-mac)\# show filter
Static Filtering Etnry: (Total 1 item(s))
1) mac: 00-33-03-04-05-06, vid: -, alias: ccc

065-7841(mac-table-static-mac)\#
show forward
Syntax:
show forward
Description:
To display the static forward table.
Argument:
None
Possible value:
None
Example:
065-7841(mac-table-static-mac)\# show forward
Static Forwarding Etnry: (Total 1 item(s))
1) mac: 00-02-03-04-05-06, port: 3, vid: -, alias: aaa 065-7841(mac-table-static-mac)\#

\section*{- management}

\section*{add}

\section*{Syntax:}

Usage: set [<name> <value>] [<vid> <value>] [<ip> <value>] [<port> <value>]
[<type> <value>] <action> <value>
Synopsis: set name Mary vid 20 ip 192.168.1.1-192.168.1.90 port 2-5,8
type h,s action a
Synopsis: set name Mary vid 20 ip 192.168.1.1-192.168.1.90

\section*{Description:}

To save the adding management policy records.
When you don't know how to set the management policy records, you can use this command as follows:
065-7841 (management-add)\# set
This command will show exhaustive operating explanation for setting the management policy records.

\section*{Argument:}
[<name> <value>] ACL entry name.
[<vid> <value>]
[<ip><value>]
[<port> <value>]
[<type> <value>]
<action> <value>
Possible value:
[<name> <value>]
[<vid> <value>]
[<ip><value>]
[<port> <value>]
[<type> <value>]
<action> <value>

\section*{Example:}

065-7841 (management-add) \# set name Mary vid 20 ip 192.168.1.1-192.168.1.90 port \(2-5,8\) type h,s action a
```

065-7841 (management-add)\# show
\#: 1
Name : Mary VlanID : 20 IP : 192.168.1.1-192.168.1.90
Type : Http, SNMP Action : Accept Port : 2, 3, 4, 5, 8

```
delete

\section*{Syntax:}
delete \#
Description:
To delete a specific record or range.
Argument:
<\#>: a specific or range management security entry(s)
Possible value:
None
Example:
065-7841 (management) \# show
\#: 1
\begin{tabular}{lll} 
Name : Tom & VlanID : 2 & IP : 192.168.1.30-192.168.1.80 \\
Type : SNMP & Action : Deny & Port : 1, 2
\end{tabular}

065-7841 (management) \# delete 1

065-7841 (management) \# show
Security rule list is empty now
edit [\#]: the specific management policy entry. Available range: 1 to 65536.

\section*{Syntax:}

Usage: set [<name> <value>] [<vid> <value>] [<ip> <value>] [<port> <value>] [<type> <value>] <action> <value>
Synopsis: set name Mary vid 20 ip 192.168.1.1-192.168.1.90 port 2-5,8 type h,s action a
Synopsis: set name Mary vid 20 ip 192.168.1.1-192.168.1.90

\section*{Description:}

To edit management policy record.

\section*{Argument:}
[<name> <value>]
[<vid> <value>]
[<ip><value>]
[<port> <value>]
[<type> <value>]
<action> <value>
Possible value:
[<name> <value>]
[<vid> <value>]
[<ip> <value>]
[<port> <value>]
[<type> <value>]
<action> <value>
Example:
065-7841 (management) \# edit 1
065-7841 (management-edit-1)\# set name Tom vid 2 ip 192.168.1.30192. 168.1.80 port 1-2 type s action d

065-7841 (management-edit-1) \# show
\#: 1
Name : Tom VlanID : 2 IP : 192.168.1.30-192.168.1.80
Type : SNMP

ACL entry name.
VLAN ID.
IP Range.
Incoming port.
Access type.
a(ccept) or d(eny).
No default and it must be set.
The range is 1-4095 and can be set to any.
For example, 192.168.1.90-192.168.1.90 or any
For example, 1 or 1-8 or 1,3-5 or any
For example, h(ttp),s(nmp),t(elnet) or any
No default and it must be set.

Action : Deny
Port : 1,2
show

Syntax:
show
Description:
To show the specific management policy record.
Argument:
None
Possible value:
None
Example:
065-7841 (management) \# show
\#: 1
Name : Tom VlanID : 2 IP : 192.168.1.30-192.168.1.80
Type : SNMP Action : Deny Port : 1, 2

\section*{- max-pkt-len}
set len

Syntax:
set len <range> <length>
Description:
To set up the maximum length of the packet that each port of the switch can accept.
Argument:
<range>: port range, syntax 1,5-7, available from 1 to 24
<length (bytes)>: maximum packet length
Possible value:
<range> : 1 to 24
<length (bytes)>: 1518/1532/9216
Example:
065-7841(max-pkt-len)\# set len 1-8 9216
show

Syntax:
show
Description:
To show current setting of maximum packet length setting.
Argument:
None
Possible value:
None
Example:
065-7841(max-pkt-len)\# show
PORT Max Packet Length
\begin{tabular}{cc}
1 & 1532 \\
2 & 1532 \\
3 & 1532 \\
4 & 1532 \\
5 & 1532 \\
6 & 1532 \\
7 & 1532 \\
8 & 1532 \\
9 & 1532 \\
10 & 1532 \\
11 & 1532 \\
12 & 1532 \\
13 & 1532 \\
14 & 1532 \\
15 & 1532 \\
16 & 1532 \\
17 & 1532 \\
18 & 1532 \\
19 & 1532 \\
20 & 1532 \\
21 & 1532 \\
22 & 1532 \\
23 & 1532 \\
24 & 1532
\end{tabular}

\section*{- mirror}

\section*{set mirror-mode}

\section*{Syntax:}
set mirror-mode <rx|disable>

\section*{Description:}

To set up the mode of mirror (rx mode or disable).
Argument:
<rx | disable>:
\(r x\) : enable the mode of mirror(Only mirror the packets that is received)
disable: end the function of mirror

\section*{Possible value:}
<rx | disable>: rx or disable
Example:
065-7841(mirror)\# set mirror-mode rx
set monitored-port
Syntax:
set monitored-port <range>
Description:
To set up the port that will be monitored. The packets received by this port will be copied to the monitoring port.
Argument:
<range>: the port that is chosen for monitored port of the mirror function,
syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(mirror)\# set monitored-port 3-5,8,10
set monitoring-port

\section*{Syntax:}
set monitoring-port <\#>
Description:
To set up the monitoring port of the mirror function. User can observe the packets that the monitored port received via this port.

\section*{Argument:}
<\#>: the monitoring port that is chosen for the mirror function. Only one port is allowed to configure, available from 1 to 24
Possible value:
<\#>: 1 to 24

\section*{Example:}

065-7841(mirror)\# set monitoring-port 2
```

Syntax:
show
Description:
To display the setting status of Mirror function.
Argument:
None
Possible value:
None
Example:
065-7841(mirror)\# show
Mirror Mode : rx
Monitoring Port : 2
Monitored Port : 3 45710

```

\section*{- port}
clear counter

\section*{Syntax:}
clear counter

\section*{Description:}

To clear all ports' counter (include simple and detail port counter) information.
Argument:
None
Possible value:
None
Example:
065-7841 (port)\# clear counter
disable flow-control
Syntax:
disable flow-control <range>
Description:
To disable the flow control function of the port.
Argument:
<range>: syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1~24
Example:
065-7841 (port)\# disable flow-control 6
disable state
Syntax:
disable state <range>
Description:
To disable the communication capability of the port.
Argument:
<range>: syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 ~ 24
Example:
065-7841 (port)\# disable state 12
enable flow-control

\section*{Syntax:}
enable flow-control <range>
Description:
To enable the flow control function of the port.
Argument:
<range>: syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 ~ 24
Example:
065-7841 (port)\# enable flow-control 3-8
enable state

\section*{Syntax:}
enable state <range>
Description:
To enable the communication capability of the port.
Argument:
<range>: syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 ~ 24
Example:
065-7841 (port)\# enable state 3-12

\section*{set speed-duplex}

\section*{Syntax:}
set speed-duplex <range> <auto|10half|10full|100half|100full|1Gfull>
Description:
To set up the speed and duplex of all ports.
Argument:
<range>:syntax 1,5-7, available from 1 to 24
<port-speed>:
auto: set auto-negotiation mode
10half: set speed/duplex 10M Half
10full: set speed/duplex 10M Full
100half: set speed/duplex 100M Half
100full: set speed/duplex 100M Full
1Gfull: set speed/duplex 1G Full
Possible value:
<range>: 1 to 24
<port-speed>: auto, 10half, 10full, 100half, 100full, 1Gfull
Example:
065-7841(port)\# set speed-duplex 5 auto
show conf
Syntax:
show conf
Description:
To display the each port's configuration about state, speed-duplex and flow control.
Argument:
None.
Possible value:
None.
Example:
065-7841 (port)\# show conf
show detail-counter
Syntax:
show detail-counter <\#>
Description:
To display the detailed counting number of each port's traffic.
Argument:
<\#>: port, available from 1 to 24
Possible value:
<\#>:1~24
Example:
065-7841 (port)\# show detail-counter 5
show sfp
Syntax:
show sfp <port>
Description:
To display the SFP module information.
Argument:
<port>: SFP port of the switch, available from 21~24
Possible value:
<port>: 21, 22, 23, 24
Example:
065-7841 (port)\# show sfp 23

\section*{Port 23 SFP information}
\begin{tabular}{ll} 
Connector Type & \(:\) SFP - LC \\
Fiber Type & \(:\) Multi-mode (MM) \\
Tx Central Wavelength & \(: 850\) \\
Baud Rate & \(: 1 G\) \\
Vendor OUI & \(: 00: 40: c 7\) \\
Vendor Name & \(:\) APAC 0pto \\
Vendor PN & \(:\) KM28-C3S-TC-N \\
Vendor Rev & \(: 0000\) \\
Vendor SN & \(: 5425010708\) \\
Date Code & \(: 050530\) \\
Temperature & \(:\) none \\
Vcc & \(:\) none \\
Mon1 (Bias) mA & \(:\) none \\
Mon2 (TX PWR) & \(:\) none \\
Mon3 (RX PWR) & \(:\) none
\end{tabular}
show simple-counter
Syntax:
show simple-counter
Description:
To display the summary counting of each port's traffic.
Argument:
None.
Possible value:
None.
Example:
065-7841 (port)\# show simple-counter
show status
Syntax:
show status
Description:
To display the port's current status.
Argument:
None.
Possible value:
None.
Example:
065-7841 (port)\# show status

\section*{- qos}
set advance-layer4

\section*{Syntax:}
set advance-layer4 <port-range> <\#> <tcp/udp port> <default> <match> Description:
To set class of ports on advanced mode of Layer 4 qos.
Argument:
<port-range>: port range, syntax 1,5-7, available from 1 to 24
<\#>: special UDP/TCP port selection, range: 1-10
<tcp/udp port range>: 0-65535.
<default>: default class (all other TCP/UDP ports). 1: high, 0: low
<match>: special TCP/UDP class. 1: high, 0: low
Possible value:
<port-range>: 1 to 24
<\#>: 1-10
<tcp/udp port range>: 0-65535
<default>: 1 or 0
<match>: 1 or 0
Example:
065-7841(qos)\# set advance-layer4 528010
set default
Syntax:
set default <class>
Description:
To set priority class of the packets that qos won't affect.
Argument:
<class>: class of service setting. 1: high, 0: low
Possible value:
<class>: 1 or 0
Example:
065-7841 (qos) \# set default 1

\section*{set diffserv}

\section*{Syntax:}
set diffserv <ds-range> <class>
Description:
To set class of ports on IP DiffServe qos.
Argument:
<ds-range>: dscp field, syntax 1,5-7, available from 0 to 63
<class>: class of service setting. 1: high, 0: low
Possible value:
<ds-range>: 0 to 63
<class>: 1or 0
Example:
065-7841(qos)\# set diffserv 0-20 1
set mode
Syntax:
set mode <port/pri_tag/tos/layer4/diffserv>
Description:
To set qos priority mode of the switch.
Argument:
<port>: per port priority
<pri_tag>: vlan tag priority
<tos>: ip tos classification
<layer4>: ip tcp/udp port classification
<diffserv>: ip diffserv classification
Possible value:
port/pri_tag/tos/layer4/diffserv
Example:
065-7841 (qos)\# set mode port
set port
Syntax:
set port <range> <class>
Description:
To set class of ports on port-based qos.
Argument:
<range> : port range, syntax 1,5-7, available from 1 to 24
<class> : class of service setting. 1: high, 0 : low
Possible value:
<range>: 1 to 24
<class>: 1or 0
Example:
065-7841 (qos) \# set port 1-10 1
```

set pri-tag

```

\section*{Syntax:}
set pri_tag <port-range> <tag-range> <class>
Description:
To set class of ports on vlan tag-based qos.

\section*{Argument:}
<port-range>: port range, syntax 1,5-7, available from 1 to 24 <tag-range>: tag priority level, syntax: 1,5-7, available from 0 to 7
<class>: class of service setting. 1: high, 0: low
Possible value:
<port-range>: 1 to 24
<tag-range>: 0 to 7
<class>: 1or 0
Example:
065-7841 (qos)\# set pri-tag 1-15 1-2 1
set simple-layer4
Syntax:
set simple-layer4 <\#>
Description:
To set class of ports on simple mode of Layer 4 qos.

\section*{Argument:}
<\#>: layer-4 configuration mode, valid values are as follows:
0 : disable ip tcp/udp port classification
1: down prioritize web browsing, e-mail, FTP and news
2: prioritize ip telephony (VoIP)
3: prioritize iSCSI
4: prioritize web browsing, e-mail, FTP transfers and news
5: prioritize streaming Audio/Video
6: prioritize databases (Oracle, IBM DB2, SQL, Microsoft)

\section*{Possible value:}
<\#>:0~6
Example:
065-7841(qos)\# set simple-layer4 2
set tos

\section*{Syntax:}
set tos <port-range> <tos-range> <class>
Description:
To set class of ports on IP TOS qos.
Argument:
<port-range>: port range, syntax: 1,5-7, available from 1 to 24
<tos-range>: tos precedence field, syntax 1,5-7, available from 0 to 7
<class>: class of service setting. 1: high, 0: low
Possible value:
<port-range>: 1 to 24
<tos-range>: 0 to 7
<class>: 1or 0
Example:
065-7841 (qos)\# set tos 1-5 0-3 0
show

\section*{Syntax:}
show
Description:
To display the information of the mode you choose.
Argument:
None.
Possible value:
None.
Example:
065-7841 (qos) \# show
IP Diffserv Classification

Default Class:high
\begin{tabular}{cccccccc} 
DiffServ & Class & DiffServ & Class & DiffServ & Class & DiffServ & Class \\
\hline 0 & high & 1 & high & 2 & high & 3 & high \\
4 & high & 5 & high & 6 & high & 7 & high \\
8 & high & 9 & high & 10 & high & 11 & high \\
12 & high & 13 & high & 14 & high & 15 & high \\
16 & high & 17 & high & 18 & high & 19 & high \\
20 & high & 21 & high & 22 & high & 23 & high \\
24 & high & 25 & high & 26 & high & 27 & high \\
28 & high & 29 & high & 30 & high & 31 & high \\
32 & high & 33 & high & 34 & high & 35 & high \\
36 & high & 37 & high & 38 & high & 39 & high \\
40 & high & 41 & high & 42 & high & 43 & high \\
44 & high & 45 & high & 46 & high & 47 & high \\
48 & high & 49 & high & 50 & high & 51 & high \\
52 & high & 53 & high & 54 & high & 55 & high \\
56 & high & 57 & high & 58 & high & 59 & high \\
60 & high & 61 & high & 62 & high & 63 & high
\end{tabular}

\section*{- reboot}
reboot
Syntax:
reboot
Description:
To reboot the system.
Argument:
None.
Possible value:
None.
Example:
065-7841\# reboot

\section*{- snmp}
disable

\section*{Syntax:}
disable set-ability
disable snmp
Description:
The Disable here is used for the de-activation of snmp or set-community.
Argument:
None.
Possible value:
None.
Example:
065-7841 (snmp) \# disable snmp
065-7841 (snmp) \# disable set-ability
enable

\section*{Syntax:}
enable set-ability
enable snmp
Description:
The Enable here is used for the activation snmp or set-community.
Argument:
None.
Possible value:
None.
Example:
065-7841 (snmp) \# enable snmp
065-7841 (snmp) \# enable set-ability
set

\section*{Syntax:}
set get-community <community>
set set-community <community>
set trap <\#> <ip> [port] [community]
Description:
The Set here is used for the setup of get-community, set-community, trap host ip, host port and trap-community.
Argument:
<\#>: trap number
<ip>: ip address or domain name
<port>: trap port
<community>:trap community name
Possible value:
<\#>: 1 to 6
<port>:1~65535

\section*{Example:}

065-7841 (snmp) \# set get-community public
065-7841 (snmp) \# set set-community private
065-7841 (snmp) \# set trap 1 192.168.1.1 162 public
show
Syntax:
show
Description:
The Show here is to display the configuration of SNMP.
Argument:
None.
Possible value:
None.
Example:
065-7841 (snmp) \# show
SNMP : Enable
Get Community: public
Set Community: private [Enable]
Trap Host 1 IP Address: 192.168.1.1 Port: 162 Community: public
Trap Host 2 IP Address: 0.0.0.0 Port: 162 Community: public
Trap Host 3 IP Address: 0.0.0.0 Port: 162 Community: public
Trap Host 4 IP Address: 0.0.0.0 Port: 162 Community: public
Trap Host 5 IP Address: 0.0.0.0 Port: 162 Community: public
Trap Host 6 IP Address: 0.0.0.0 Port: 162 Community: public

\section*{- stp}

MCheck
Syntax:
MCheck <range>

\section*{Description:}

To force the port to transmit RST BPDUs.
Argument:
<range>: syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(stp)\# Mcheck 1-8
disable
Syntax:
disable
Description:
To disable the STP function.
Argument:
None.
Possible value:
None.
Example:
065-7841(stp)\# disable
enable

\section*{Syntax:}
enable
Description:
To enable the STP function.
Argument:
None.
Possible value:
None.
Example:
065-7841(stp)\# enable

\section*{set config}

\section*{Syntax:}
set config <Bridge Priority> <Hello Time> <Max. Age> <Forward Delay>
Description:
To set up the parameters of STP.
Argument:
<Bridge Priority>:priority must be a multiple of 4096, available from 0 to 61440.
<Hello Time>: available from 1 to 10.
<Max. Age>: available from 6 to 40.
<Forward Delay>: available from 4 to 30.
Note: 2*(Forward Delay -1) >= Max Age
Max Age >= \(2^{\star}\) (Hello Time +1 )
Possible value:
<Bridge Priority>: 0 to 61440
<Hello Time>: 1 to 10
<Max. Age>: 6 to 40
<Forward Delay>: 4 to 30
Example:
065-7841(stp)\# set config 6144022015
set port

\section*{Syntax:}
set port <range> <path cost> <priority> <edge_port> <admin p2p>
Description:
To set up the port information of STP.
Argument:
<range>: syntax 1,5-7, available from 1 to 24
<path cost>: 0, 1-200000000. The value zero means auto status
<priority>: priority must be a multiple of 16, available from 0 to 240
<edge_port> : Admin Edge Port, <yes|no>
<admin p2p>: Admin point to point, <auto|true|false>
Possible value:
<range>:1 to 24
<path cost>: 0, 1-200000000
<priority>: 0 to 240
<edge_port>: yes / no
<admin p2p>: auto / true / false
Example:
065-7841(stp)\# set port 1-16 0128 yes auto

\section*{set version}

\section*{Syntax:}
set version <stp|rstp>
Description:
To set up the version of STP.
Argument:
<stp|rstp>:stp / rstp
Possible value:
<stp|rstp>:stp / rstp
Example:
065-7841(stp)\# set version rstp
show config

\section*{Syntax:}
show config
Description:
To display the configuration of STP.
Argument:
None.
Possible value:
None.
Example:
065-7841 (stp) \# show config
STP State Configuration
Spanning Tree Protocol : Enabled
Bridge Priority (0-61440) : 61440
Hello Time \((1-10 \mathrm{sec}) \quad: 2\)
Max. Age (6-40 sec) : 20
Forward Delay ( \(4-30 \mathrm{sec}\) ) : 15
Force Version : RSTP
show port
Syntax:
show port
Description:
To display the port information of STP.
Argument:
None.
Possible value:
None.
Example:
065-7841\# stp
065-7841 (stp) \# show port
Port Port Status Path Cost Priority Admin Edge Port Admin Point To Point
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 2 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 3 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 4 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 5 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 6 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 7 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 8 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 9 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 10 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 11 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 12 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 13 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 14 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 15 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 16 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 17 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 18 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 19 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 20 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 21 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline & \begin{tabular}{l}
DISCARDING \\
to quit)
\end{tabular} & 2000000 & 128 & No & Auto \\
\hline 23 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline 24 & DISCARDING & 2000000 & 128 & No & Auto \\
\hline
\end{tabular}

\section*{show status}

\section*{Syntax:}
show status
Description:
To display the status of STP.
Argument:
None.
Possible value:
None.

\section*{Example:}

065-7841(stp)\# show status
STP Status :
STP State : Enabled
Bridge ID : 00:40:C7:D8:09:1D
Bridge Priority : 61440
Designated Root : 00:40:C7:D8:09:1D
Designated Priority : 61440
Root Port : 0
Root Path Cost : 0
Current Max. Age (sec) : 20
Current Forward Delay (sec) : 15
Hello Time (sec) : 2
STP Topology Change Count : 0
Time Since Last Topology Change (sec) : 848

\section*{- system}
set contact

\section*{Syntax:}
set contact <contact string>
Description:
To set the contact description of the switch.
Argument:
<contact>:string length up to 40 characters.
Possible value:
<contact>: A, b, c, d, ... ,z and 1, 2, 3, .... etc.
Example:
065-7841(system)\# set contact Taipei
set device-name

\section*{Syntax:}
set device-name <device-name string>

\section*{Description:}

To set the device name description of the switch.
Argument:
<device-name>: string length up to 40 characters.
Possible value:
<device-name>: A, b, c, d, ... ,z and 1, 2, 3, ... etc.
Example:
065-7841(system)\# set device-name CR-2600
set location
Syntax:
set location <location string>
Description:
To set the location description of the switch.
Argument:
<location>: string length up to 40 characters.
Possible value:
<location>: \(A, b, c, d, \ldots, z\) and \(1,2,3, \ldots\) etc.
Example:
065-7841(system)\# set location Taipei
show

\section*{Syntax:}
show
Description:
To display the basic information of the switch.
Argument:
None.
Possible value:
None.
Example:
065-7841 (system) \# show
Model Name : 065-7841
System Description : L2 Managed Switch
Location
Contact
Device Name : 065-7841
System Up Time : 0 Days 0 Hours 4 Mins 14 Secs
Current Time : Tue Jan 17 16:28:46 2006
BIOS Version : v1.05
Firmware Version : v2.08
Hardware-Mechanical Version : v1.01-v1.01
Serial Number : 030C02000003
Host IP Address : 192.168.1.1
Host MAC Address : 00-40-c7-e7-00-10
Device Port : UART \(* 1\), TP * 22, Dual-Media Port (RJ45/SFP)
* 2

RAM Size : 16 M
Flash Size : 2 M
- tftp
set server

\section*{Syntax:}
set server <ip>
Description:
To set up the IP address of tftp server.
Argument:
<ip>: the IP address of tttp server
Possible value:
<ip>: tftp server ip
Example:
065-7841(tftp)\# set server 192.168.3.111
show
Syntax:
show
Description:
To display the information of tftp server.
Argument:
None.
Possible value:
None.
Example:
065-7841(tftp)\# show
Tftp Server : 192.168.3.111

\section*{- time}
set daylightsaving
Syntax:
set daylightsaving <hr> <MM/DD/HH> <mm/dd/hh>
Description:
To set up the daylight saving.

\section*{Argument:}
hr : daylight saving hour, range: -5 to +5
MM : daylight saving start Month (01-12)
DD : daylight saving start Day (01-31)
HH : daylight saving start Hour (00-23)
mm : daylight saving end Month (01-12)
dd : daylight saving end Day (01-31)
hh : daylight saving end Hour (00-23)
Possible value:
hr : -5 to +5
MM : (01-12)
DD : (01-31)
\(\mathrm{HH}:(00-23)\)
mm : (01-12)
dd : (01-31)
hh : (00-23)

\section*{Example:}

065-7841(time)\# set daylightsaving 3 10/12/01 11/12/01
Save Successfully
set manual
Syntax:
set manual <YYYY/MM/DD> <hh:mm:ss>
Description:
To set up the current time manually.
Argument:
\begin{tabular}{|c|c|c|c|c|c|}
\hline YYYY & Year & (2000-2036) & MM & Month & (01-12) \\
\hline DD & Day & (01-31) & hh & Hour & (00-23) \\
\hline mm & Minut & (00-59) & ss & Second & (00-59) \\
\hline \multicolumn{6}{|l|}{Possible value:} \\
\hline YYYY & (2000 & 2036) & MM & (01-12) & \\
\hline DD & (01-31) & & hh & (00-23) & \\
\hline mm & (00-59) & & ss & (00-59) & \\
\hline
\end{tabular}

\section*{Example:}

065-7841(time)\# set manual 2004/12/23 16:18:00

\section*{Syntax:}
set ntp <ip> <timezone>

\section*{Description:}

To set up the current time via NTP server.
Argument:
<ip>: ntp server ip address or domain name
<timezone>: time zone (GMT), range: -12 to +13
Possible value:
<timezone>: -12,-11...,0,1...,13
Example:
065-7841(time)\# set ntp clock.via.net 8
Synchronizing...(1)
Synchronization success
show

\section*{Syntax:}
show
Description:
To show the time configuration, including "Current Time", "NTP Server"," Timezone",
" Daylight Saving"," Daylight Saving Start" and "Daylight Saving End"
Argument:
None.
Possible value:
None.
Example:
065-7841 (time) \# show
Current Time : Thu Thu 14 15:04:03 2005
NTP Server : 209.81.9.7
Timezone : GMT+8:00
Day light Saving : 0 Hours
Day light Saving Start : Mth: 1 Day: 1 Hour: 0
Day light Saving End : Mth: 1 Day: 1 Hour: 0
065-7841 (time) \#

\section*{- trunk}
del trunk
Syntax:
del trunk <port-range>

\section*{Description:}

To delete the trunking port.
Argument:
<port-range>: port range, syntax 1,5-7, available from 1 to 24
Possible value:
<port-range>: 1 to 24
Example:
065-7841(trunk)\# del trunk 1
set priority

\section*{Syntax:}
set priority <range>
Description:
To set up the LACP system priority.
Argument:
<range>: available from 1 to 65535.
Possible value:
<range>: 1 to 65535, default: 32768
Example:
065-7841(trunk)\# set priority 33333
set trunk

\section*{Syntax:}
set trunk <port-range> <method> <group> <active LACP>

\section*{Description:}

To set up the status of trunk, including the group number and mode of the trunk as well as LACP mode.

\section*{Argument:}
<port-range> : port range, syntax 1,5-7, available from 1 to 24
<method>:
static : adopt the static link aggregation
lacp : adopt the dynamic link aggregation- link aggregation control protocol
<group>: 1-8.
<active LACP>:
active : set the LACP to active mode
passive : set the LACP to passive mode
Possible value:
<port-range> : 1 to 24
<method>: static / lacp
<group>: 1-8.
<active LACP>: active / passive

\section*{Example:}

065-7841(trunk)\# set trunk 1-4 lacp 1 active

\section*{Syntax:}
show aggtr-view
Description:
To display the aggregator list.
Argument:
None.
Possible value:
None.
Example:
065-7841(trunk)\# show aggtr-view
Aggregator 1) Method: None Member Ports: 1 Ready Ports:1

Aggregator 2) Method: LACP Member Ports: 2 Ready Ports:
show lacp-detail
Syntax:
show lacp-detail <aggtr>
Description:
To display the detailed information of the LACP trunk group.
Argument:
<aggtr>: aggregator, available from 1 to 24
Possible value:
<aggtr>: 1 to 24
Example:
065-7841 (trunk) \# show lacp-detail 2
Aggregator 2 Information: Actor Partner
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{System Priority} & maC Address & System Priority & maC Address \\
\hline \multicolumn{2}{|c|}{32768} & 00-40-c7-e8-00-02 & 32768 & 00-00-00-00-00-00 \\
\hline Port & Key & Trunk Status & Port & Key \\
\hline 2 & 257 & --- & 2 & 0 \\
\hline
\end{tabular}

\section*{Syntax:}
show lacp-priority

\section*{Description:}

To display the value of LACP Priority.
Argument:
None.
Possible value:
None.
Example:
065-7841(trunk)\# show lacp-priority
LACP System Priority : 32768
show status
Syntax:
show status
Description:
To display the aggregator status and the settings of each port.
Argument:
None.
Possible value:
None.
Example:
065-7841(trunk)\# show status
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Trunk Port Setting} & \multicolumn{2}{|l|}{Trunk Port Status} \\
\hline port & Method & Group & Active LACP & Aggtregator & Status \\
\hline & & & & & \\
\hline 1 & None & 0 & Active & 1 & Ready \\
\hline 2 & LACP & 1 & Active & 2 & --- \\
\hline 3 & LACP & 1 & Active & 3 & --- \\
\hline 4 & LACP & 1 & Active & 4 & --- \\
\hline 5 & LACP & 1 & Active & 5 & --- \\
\hline 6 & LACP & 1 & Active & 6 & --- \\
\hline 7 & LACP & 1 & Active & 7 & --- \\
\hline & & &  & & \\
\hline 19 & None & 0 & Active & 19 & --- \\
\hline 20 & None & 0 & Active & 20 & --- \\
\hline 21 & None & 0 & Active & 21 & --- \\
\hline 22 & None & 0 & Active & 22 & --- \\
\hline 23 & None & 0 & Active & 23 & --- \\
\hline 24 & None & 0 & Active & 24 & --- \\
\hline
\end{tabular}

\section*{- vlan}
del port-group
Syntax:
del port-group <name>
Description:
To delete the port-based vlan group.
Argument:
<name>: which vlan group you want to delete.
Possible value:
<name>: port-vlan name
Example:
065-7841(vlan)\# del port-group VLAN-2
del tag-group

\section*{Syntax:}
del tag-group <vid>
Description:
To delete the tag-based vlan group.
Argument:
<vid>: which vlan group you want to delete, available from 1 to 4094
Possible value:
<vid>: 1 to 4094
Example:
065-7841(vlan)\# del tag-group 2
disable drop-untag
Syntax:
disable drop-untag <range>
Description:
Don't drop the untagged frames.
Argument:
<range> : which port(s) you want to set, syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(vlan)\# disable drop-untag 5-10
disable sym-vlan

\section*{Syntax:}
disable sym-vlan <range>
Description:
To drop frames from the non-member port.
Argument:
<range>: which port(s) you want to set, syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(vlan)\# disable sym-vlan 5-10
enable drop-untag
Syntax:
enable drop-untag <range>
Description:
To drop the untagged frames.
Argument:
<range>: which port(s) you want to set, syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(vlan)\# enable drop-untag 5-10
enable sym-vlan

\section*{Syntax:}
enable sym-vlan <range>
Description:
To drop frames from the non-member port.
Argument:
<range> : which port(s) you want to set, syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(vlan)\# enable sym-vlan 5-10
set mode

\section*{Syntax:}
set mode <disable|port|tag|metro|double-tag> [up-link]

\section*{Description:}

To switch VLAN mode, including disable, port-based, tag-based, metro and doubletag modes.

\section*{Argument:}
<disable>: vlan disable
<tag>: set tag-based vlan
<port>: set port-based vlan
<metro>: set metro mode vlan
<double-tag>: enable Q-in-Q function
<up-link>: syntax 1,5-7, available from 23 to 24 , only for metro mode vlan Possible value:
<disable|port|tag|metro|double-tag>: disable,port,tag,metro,double-tag
[up-link]: 21, 22, 23 or 24 or " 23,24 "
Example:
065-7841(vlan)\# set mode port
set port-group

\section*{Syntax:}
set port-group <name> <range>
Description:
To add or edit a port-based VLAN group.
Argument:
<name>: port-vlan name
<range>: syntax 1,5-7, available from 1 to 24
Possible value:
<range>: 1 to 24
Example:
065-7841(vlan)\# set port-group VLAN-1 2-5,6,15-13
set port-role

\section*{Syntax:}
set port-role <range> <access|trunk|hybrid> [vid]
Description:
To set egress rule: configure the port roles.
Argument:
<range> :which port(s) you want to set, syntax 1,5-7, available from 1 to 24
<access>: Do not tag frames
<trunk>: Tag all frames
<hybrid>: Tag all frames except a specific VID
<vid>: untag-vid for hybrid port
Possible value:
<range>: 1 to 24
<vid>: 1 to 4094

\section*{Example:}

065-7841(vlan)\# set port-role 5 hybrid 6
set pvid

\section*{Syntax:}
set pvid <range> <pvid>

\section*{Description:}

To set the pvid of vlan.
Argument:
<range>: which port(s) you want to set PVID(s), syntax 1,5-7, available from 1 to 24
<pvid>: which PVID(s) you want to set, available from 1 to 4094
Possible value:
<range>: 1 to 24
<pvid>: 1 to 4094
Example:
065-7841(vlan)\# set pvid 3,5,6-8 5
```

set tag-group

```

\section*{Syntax:}
set tag-group <vid> <name> <range> <\#>

\section*{Description:}

To add or edit the tag-based vlan group.
Argument:
<vid>: vlan ID, range from 1 to 4094
<name>: tag-vlan name
<range>: vlan group members, syntax 1,5-7, available from 1 to 24
<\#>: sym/asym vlan setting. 1: symmetric vlan, 0: asymmetric vlan
Possible value:
<vid>: 1 to 4094
<range>: 1 to 24
<\#>: 0 or 1
Example:
065-7841(vlan)\# set tag-group 2 VLAN-2 2-5,6,15-13 0
show group

\section*{Syntax:}
show group
Description:
To display the vlan mode and vlan group.
Argument:
None.
Possible value:
None.
Example:
065-7841 (vlan) \# show group
Vlan mode is double-tag.
1) Vlan Name : default

Vlan ID : 1
Sym-vlan : Disable
Member : 12345678910111213141516
2) Vlan Name : VLAN-2

Vlan ID : 2
Sym-vlan : Disable
Member : 23456131415
show pvid
Syntax:
show pvid
Description:
To display pvid, ingress/egress rule.
Argument:
None.
Possible value:
None.
Example:
065-7841 (vlan) \# show pvid
\begin{tabular}{|c|c|c|c|c|c|}
\hline Port & PVID & Rule1 & Rule2 & Port Rule & Untag Vid \\
\hline 1 & 1 & Disable & Disable & Access & - \\
\hline 2 & 1 & Disable & Disable & Access & - \\
\hline 3 & 5 & Disable & Disable & Access & - \\
\hline 4 & 1 & Disable & Disable & Access & - \\
\hline 5 & 5 & Enable & Disable & Hybrid & 6 \\
\hline 6 & 5 & Enable & Disable & Access & - \\
\hline 7 & 5 & Enable & Disable & Access & - \\
\hline 8 & 5 & Enable & Disable & Access & - \\
\hline 9 & 1 & Enable & Disable & Access & - \\
\hline 10 & 1 & Enable & Disable & Access & - \\
\hline 11 & 1 & Disable & Disable & Access & - \\
\hline 23 & 1 & Disable & Disable & Access & - \\
\hline 24 & 1 & Disable & Disable & Access & - \\
\hline
\end{tabular}

■ VS
disable
Syntax:
disable
Description:
To disable the virtual stack.
Argument:
None.
Possible value:
None.
Example:
065-7841(vs) \# disable
enable
Syntax:
enable
Description:
To enable the virtual stack.
Argument:
None.
Possible value:
None.
Example:
065-7841(vs)\# enable
set gid
Syntax:
set gid <gid>
Description:
To set the group id.
Argument:
<gid>:Group ID
Possible value:
<gid>:a-z,A-Z,0-9
Example:
065-7841(vs) \# set gid group1
set role

\section*{Syntax:}
set role <master|slave>
Description:
To set role.
Argument:
<master|slave>:
master: act as master, slave : act as slave
Possible value:
<master|slave>: master or slave

\section*{Example:}

065-7841(vs) \# set role master
show

Syntax:
show
Description:
To display the configuration of the virtual stack.
Argument:
None.
Possible value:
None.
Example:
065-7841(vs) \# show
Virtual Stack Config:
State : Enable
Role : Master
Group ID : group1

\section*{5. Maintenance}

\section*{5-1. Resolving No Link Condition}

The possible causes for a no link LED status are as follows:
- The attached device is not powered on
- The cable may not be the correct type or is faulty
- The installed building premise cable is faulty
- The port may be faulty

\section*{5-2. Q\&A}
1. Computer A can connect to Computer B, but cannot connect to Computer C through the Managed Switch.
\(\checkmark \quad\) The network device of Computer C may fail to work. Please check the link/act status of Computer C on the LED indicator. Try another network device on this connection.
\(\checkmark \quad\) The network configuration of Computer C may be something wrong. Please verify the network configuration on Computer C .
2. The uplink connection function fails to work.
\(\checkmark \quad\) The connection ports on another must be connection ports. Please check if connection ports are used on that Managed Switch.
\(\checkmark \quad\) Please check the uplink setup of the Managed Switch to verify the uplink function is enabled.
3. The console interface cannot appear on the console port connection.
\(\checkmark \quad\) The COM port default parameters are [Baud Rate: 115200, Data Bits: 8, Parity Bits: None, Stop Bit: A, Flow Control: None]. Please check the COM port property in the terminal program. And if the parameters are changed, please set the COM configuration to the new setting.
\(\checkmark \quad\) Check the RS-232 cable is connected well on the console port of the Managed Switch and COM port of PC.
\(\checkmark \quad\) Check if the COM of the PC is enabled.
4. How to configure the Managed Switch?
\(\checkmark\) The "Hyperterm" is the terminal program in Win95/98/NT. Users can also use any other terminal programs in Linux/Unix to configure the Managed Switch. Please refer to the user guide of that terminal program. But the COM port parameters (baud rate/ data bits/ parity bits/ flow control) must be the same as the setting of the console port of the Managed Switch.

\section*{Appendix A Technical Specifications}

\section*{Features}
- 20 (10/100/1000Mbps) Gigabit Ethernet (TP) switching ports are compliant with IEEE802.3, 802.3u, \(802.3 z\) and 802.3ab.
- 4 Gigabit TP/SFP fiber are dual media ports with auto detected function.
- Non-blocking store-and-forward shared-memory Web-Smart switched.
- Supports auto-negotiation for configuring speed, duplex mode.
- Supports \(802.3 x\) flow control for full-duplex ports.
- Supports collision-based and carrier-based backpressure for half-duplex ports.
- Any ports can be in disable mode, force mode or auto-polling mode.
- Supports Head of Line (HOL) blocking prevention.
- Supports broadcast storm filtering.
- Auto-aging with programmable inter-age time.
- Supports 802.1p Class of Service with 2-level priority queuing.
- Supports port sniffer function
- Programmable maximum Ethernet frame length of range from 1518 to 9600 bytes jumbo frame.
- Supports port-based VLAN, 802.1Q tag-based VLAN.
- Efficient self-learning and address recognition mechanism enables forwarding rate at wire speed.
- Web-based management provides the ability to completely manage the switch from any web browser.
- SNMP/Telnet interface delivers complete in-band management.
- Supports IEEE 802.1d Spanning Tree Protocol.
- Supports IEEE 802.1w Rapid Spanning Trees.
- Supports IEEE 802.1s Multiple Spanning Trees.
- Supports IEEE 802.1X port-based network access control.
- Supports ACL to classify the ingress packets to do permit/deny, rate limit actions
- Supports QCL to classify the ingress packets for priority queues assignment
- Supports IP-MAC Binding function to prevent spoofing attack
- Supports IP Multicasting to implement IGMP Snooping function.
- Supports 802.1p Class of Service with 4-level priority queuing.
- Supports 802.3ad port trunking with flexible load distribution and failover function.
- Supports ingress port security mode for VLAN Tagged and Untagged frame process.
- Supports SNMP MIB2 and RMON sampling with sampled packet error indication.

\section*{Hardware Specifications}
- Standard Compliance: IEEE802.3/802.3ab / 802.3z / 802.3u / 802.3x
- Network Interface:
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Configuration } & \multicolumn{1}{c|}{ Mode } & Connector & Port \\
\hline 10/100/1000Mbps Gigabit TP & NWay & TP (RJ-45) & \(1-24\) \\
\hline 1000Base-SX Gigabit Fiber & 1000 FDX & *SFP & \(21,24(\) Option) \\
\hline 1000Base-LX Gigabit Fiber & 1000 FDX & *SFP & \(21,24(\) Option) \\
\hline 1000Base-LX Single Fiber WDM (BiDi) & 1000 FDX & *SFP & 21,24 (Option) \\
\hline
\end{tabular}
*Port 21, 24 are TP/SFP fiber dual media ports with auto detected function
*Optional SFP module supports LC or BiDi LC transceiver
- Transmission Mode: 10/100Mbps support full or half duplex 1000Mbps support full duplex only
- Transmission Speed: 10/100/1000Mbps for TP 1000Mbps for Fiber
- Full Forwarding/Filtering Packet Rate: PPS (packets per second)
\begin{tabular}{|l|l|}
\hline Forwarding Rate & \multicolumn{1}{|c|}{ Speed } \\
\hline \(1,488,000 \mathrm{PPS}\) & 1000 Mbps \\
\hline \(148,800 \mathrm{PPS}\) & 100 Mbps \\
\hline \(14,880 \mathrm{PPS}\) & 10 Mbps \\
\hline
\end{tabular}
- MAC Address and Self-learning: 8K MAC address 4K VLAN table entries,
- Buffer Memory: Embedded 1392 KB frame buffer
- Flow Control: IEEE802.3x compliant for full duplex Backpressure flow control for half duplex
- Cable and Maximum Length:
\begin{tabular}{|l|l|}
\hline TP & Cat. 5 UTP cable, up to 100 m \\
\hline 1000Base-SX & \begin{tabular}{l} 
Up to \(220 / 275 / 500 / 550 \mathrm{~m}\), \\
which depends on Multi-Mode Fiber type
\end{tabular} \\
\hline 1000Base-LX & Single-Mode Fiber, up to10/30/50Km \\
\hline 1000Base-LX WDM (BiDi) & Single-Mode Single Fiber, up to 20 Km \\
\hline
\end{tabular}
- Diagnostic LED:

System LED : Power
Per Port LED:
10/100/1000M TP Port 1 to 24 : LINK/ACT, 10/100/1000Mbps 1000M SFP Fiber Port 21 to 24 : SFP(LINK/ACT)
- Power Requirement : AC Line

Voltage : 100~240 V
Frequency : \(50 \sim 60 \mathrm{~Hz}\)
Consumption : 30W
- Ambient Temperature : \(0^{\circ}\) to \(40^{\circ} \mathrm{C}\)
- Humidity : \(5 \%\) to \(90 \%\)
- Dimensions : \(44(\mathrm{H}) \times 442(\mathrm{~W}) \times 209(\mathrm{D}) \mathrm{mm}\)
- Comply with FCC Part 15 Class A \& CE Mark Approval

\section*{Management Software Specifications}
\begin{tabular}{|c|c|}
\hline System Configuration & Auto-negotiation support on 10/100/1000 BaseTX ports, Web browser or console interface can set transmission speed (10/100/1000Mbps) and operation mode (Full/Half duplex) on each port, enable/disable any port, set VLAN group, set Trunk Connection. \\
\hline Management Agent & SNMP support; MIB II, Bridge MIB, RMON MIB \\
\hline Spanning Tree Algorithm & IEEE 802.1D \\
\hline VLAN Function & Port-Base / 802.1Q-Tagged, allowed up to 256 active VLANs in one switch. \\
\hline Trunk Function & Ports trunk connections allowed \\
\hline IGMP & IP Multicast Filtering by passively snooping on the IGMP Query. \\
\hline Bandwidth Control & Supports by-port Egress/Ingress rate control \\
\hline Quality of Service (QoS) & \begin{tabular}{l}
Referred as Class of Service (CoS) by the IEEE 802.1P standard ,Classification of packet priority can be based on either a VLAN tag on packet or a user-defined \\
Per port QoS. \\
Two queues per port \\
IP TOS Classification \\
TCP/UDP Port Classification \\
IP DiffServe Classification
\end{tabular} \\
\hline Port Security & Limit number of MAC addresses learned per port static MAC addresses stay in the filtering table. \\
\hline Internetworking Protocol & Bridging : 802.1D Spanning Tree IP Multicast : IGMP Snooping IP Multicast Packet Filtering Maximum of 256 active VLANs and IP multicast sessions \\
\hline Network Management & \begin{tabular}{l}
One RS-232 port as local control console \\
Telnet remote control console \\
SNMP agent : MIB-2 (RFC 1213) \\
Bridge MIB (RFC 1493) \\
RMON MIB (RFC 1757)-statistics \\
Ethernet-like MIB (RFC 1643) \\
Web browser support based on HTTP Server and CGI parser TFTP software-upgrade capability.
\end{tabular} \\
\hline
\end{tabular}

Note: Any specification is subject to change without notice.

\section*{Appendix B Null Modem Cable Specifications}

The DB-9 cable is used for connecting a terminal or terminal emulator to the Managed Switch's RS-232 port to access the command-line interface.

The table below shows the pin assignments for the DB-9 cable.
\begin{tabular}{lll} 
Function & Mnemonic & Pin \\
Carrier & CD & 1 \\
Receive Data & RXD & 2 \\
Transmit Data & TXD & 3 \\
Data Terminal Ready & DTR & 4 \\
Signal Ground & GND & 5 \\
Data Set Ready & DSR & 6 \\
Request To Send & RTS & 7 \\
Clear To Send & CTS & 8
\end{tabular}

9 Pin Null Modem Cable
\begin{tabular}{|c|c|c|c|c|}
\hline CD & 1 & & 4 & DTR \\
\hline DSR & 6 & \(\square\) & 1 & CD \\
\hline DTR & 4 & & 6 & DSR \\
\hline RXD & 2 & & 3 & TXD \\
\hline TXD & 3 & & 2 & RXD \\
\hline GND & 5 & & 5 & GND \\
\hline RTS & 7 & & 8 & CTS \\
\hline CTS & 8 & & 7 & RTS \\
\hline Reserve & 9 & & 9 & Rese \\
\hline
\end{tabular}```


[^0]:    IP Parameters: (Frame Type = IPv4 and IP Protocol Filter = Other)
    IP Protocol Value
    Default: 255
    IPTTL: (Time To Live)
    How many routers a datagram can pass through. Each router decrements this value by 1 until it reaches 0 when the datagram is discarded. This keeps misrouted datagrams from remaining on the Internet forever

    Range: Any / Non-zero / Zero
    Any: Including all conditions for IPTTL
    Non-Zero: Including IPTTL is Non-Zero
    Zero: Including IPTTL is zero
    IP Fragment: (IP Fragmentation Flag)
    Controls datagram fragmentation together with the identification field. The flags indicate whether the datagram may be fragmented, whether the datagram is fragmented, and whether the current fragment is the final one.

    Range: Any / Yes / No
    Any: Including all IP fragment case
    Yes: The ingress frame is fragmented packet
    No: The ingress frames is not fragmented packet
    IP Option:
    A list of optional specifications for security restrictions, route recording, and source routing. Not every datagram specifies an options field.

    Range: Any / Yes / No
    Any: Including all IP option case
    Yes: The ingress frame is specified IP options
    No: The ingress frame is not specified IP options
    SIP Filter: (SIP Source IP Address)
    Range: Any / Host / Network
    Any: Including all source IP address
    Host: Only one specific source host IP address
    Network: A specific IP subnet segment under the source IP mask
    SIP Address:
    Default: 192.168.1.1
    SIP Mask:

